Text
                    В. П. Передерни
УСТРОЙСТВО АВТОМОБИЛЯ
Допущено Министерством образования Российской Федерации
в качестве учебного пособия для студентов образовательных
учреждений среднего профессионального образования
Москва
ИД «ФОРУМ» - ИНФРА-М
2008


УДК 629.33(075.32) ББК 39.33я723 П27 Рецензенты: Зам. Генерального директора ФГУП «НИЦИАМТ» к. т. н., профессор кафедры «Автомобили им. Е. А. Чудакова» МАМ И, заслуженный машиностроитель Российской Федерации В. И. Сальников', преподаватель спецдисциплин Дмитровского политехнического колледжа, почетный работник среднего профессионального / образования России Ю. В. Петров Передерни В. П. П27 Устройство автомобиля: учебное пособие. — М.: ИД «ФОРУМ»: ИНФРА-М, 2008. — 288 с. — (Профессиональное образование). ISBN 978-5-8199-0155-7 (ИД «ФОРУМ») ISBN 978-5-16-002215-4 (ИНФРА-М) В пособии представлены этапы развития автомобилестроения и классификация автотранспортных средств. Подробно рассмотрены устройство и работа основных механизмов и систем автомобиля: двигателя, трансмиссии, несущих конструкций, систем управления. Пособие составлено в соответствии с государственным образовательным стандартом среднего профессионального образования и предназначено для студентов и преподавателей средних профессиональных учебных заведений по специальности 1705 «Техническое обслуживание и ремонт автомобильного транспорта», может быть полезно для студентов вузов и учащихся учреждений начального профессионального образования, а также для работников автотранспортных предприятий. УДК 629.33(075.32) ББК 39.33я723 ISBN 978-5-8199-0155-7 (ИД «ФОРУМ») © В. П. Передерни, 2008 ISBN 978-5-16-002215-4 (ИНФРА-М) © ИД «ФОРУМ», 2008
Введение Развитие автомобилестроения в России Автомобиль — наиболее эффективное транспортное средство. Автомобильный транспорт выполняет основной объем перевозок грузов и пассажиров. Первый русский автомобиль с двигателем внутреннего сгорания был построен Е. А. Яковлевым и П. А. Фрезе в 1896 г. Производство автомобилей в России началось в 1908 г. со сборки машин на Русско-Балтийском вагоностроительном заводе в Риге. Было выпущено примерно 800 машин. В 1916 г. в Тюфелевой роще состоялась закладка завода Автомобильного Московского Общества (АМО), где с 1917 г. по 1919 г. собирались автомобили Ф-15 по итальянской лицензии. С 1919 г. по 1923 г. завод выполнял в основном ремонт автомобилей. 1 ноября 1924 г. был собран первый советский грузовик АМО-Ф-15. В развитии отечественной автомобильной промышленности можно выделить несколько основных этапов. 1924—1930 гг. — мелкосерийное производство автомобилей на заводе АМО (в настоящее время АМО ЗИЛ). В 1925 г. начал выпуск грузовых автомобилей Ярославский автомобильный завод. В 1930 г. пущен в строй Московский завод малолитражных автомобилей, принято решение о строительстве в Нижнем Новгороде автомобильного завода мощностью 100 тыс. автомобилей в год. 1931—1946 гг. — основными задачами стали создание материальной базы для массового производства автомобилей и обеспечение заводов высококвалифицированными кадрами. В 1931 г. начата реконструкция завода АМО для массового производства грузовиков конвейерным способом. В 1932 г. построен Горьковский автомобильный завод, начался серийный выпуск грузовиков ГАЗ-АА. В этот период начал выпуск большегрузных автомобилей Ярославский автомобильный завод, Московский завод малолитражных автомобилей освоил производство легковых автомобилей КИМ-10. В 1944 г. построен завод на Урале, начат выпуск грузовых автомобилей ЗИС-5В. 1947—1958 гг. — разработаны и поставлены на производство автомобили новых конструкций: грузовые большой грузоподъемности, тягачи, автомобили-самосвалы, специализированные (пожарные, санитарные и др.). Вступили в строй новые автомобильные и автобусные заводы в городах
4 Введение Минск, Павловск, Кутаиси, Кременчуг и Львов. Расширился типаж грузовых и легковых автомобилей и автобусов. 1959—1965 гг. — увеличивается число выпускаемых автомобилей, повышается их качество. Происходит специализация и кооперирование заводов по выпуску автомобилей. Так, Ярославский автомобильный завод (ныне ЯМЗ) становится заводом по выпуску дизелей, а производство автомобилей передается на новый завод в г. Кременчуг. Производство карьерных самосвалов грузоподъемностью выше 25 т, изготовляемых на Минском автомобильном заводе, передано Белорусскому автомобильному заводу в г. Жодино. 1966—1970 гг. — реконструкция и техническое перевооружение заводов ГАЗ, ЗИЛ, АЗЛК, МАЗ, БелАЗ и др. Вступили в строй Ижевский автомобильный завод по производству автомобилей «Москвич»-408 и Волжский автомобильный завод в г. Тольятти. 1971—1980 гг. — интенсивное развитие автомобилестроения. В 1975 г. было выпущено 1 964 000 автомобилей. 16 марта 1976 г. в г. Набережные Челны был выпушен первый автомобиль КамАЗ-5320. В декабре 1976 г. автомобильная промышленность СССР преодолела двухмиллионный рубеж, выпустив 2 025 000 автомобилей за год. Переход на новые экономические отношения затормозил развитие отечественного автомобилестроения. В настоящее время заводы автомобильной промышленности развивают новые формы сотрудничества с зарубежными фирмами и в основном ориентированы на выпуск автомобилей по заказу. Классификация автотранспортных средств Классификация отечественных автотранспортных средств осуществляется по следующим признакам: • вид автотранспортного средства; • основной технический параметр (масса, мощность или габаритные размеры); • тип кузова; • назначение; • колесная формула; • тип двигателя. Автомобильный подвижной состав подразделяют на пассажирский, грузовой и специальный. К пассажирскому относятся легковые автомобили, автобусы, пассажирские прицепы и полуприцепы; к грузовому — грузовые автомобили, атомобили-тягачи, грузовые прицепы и полуприцепы с универсальными или специализированными надстройками для размещения груза; к специальному — автомобили, прицепы и полуприцепы с установленным специальным оборудованием, имеющие технологическое или другое назначение и выполняющие различные, преимущественно нетранспортные, работы.
Введение 5 Пассажирские автомобили вместимостью до восьми человек, включая водителя, относятся к легковым, свыше восьми человек — к автобусам. Легковые автомобили по рабочему объему цилиндров двигателя делятся на следующие классы: • особо малый (до 1,099 л); • малый (1,1—1,799 л); • средний (1,8—3,499 л); • большой (3,5 л и более); • высший (не регламентируется). На базе легковых автомобилей выпускаются грузовые и грузо-пассажирские автомобили (комби и грузовой комби), у которых для увеличения размеров площадки, предназначенной для размещения в кузове груза, задние сиденья делаются складывающимися, а задняя часть кузова обеспечивает увеличенный внутренний объем. Автобусы подразделяются по габаритным размерам (длине) на следующие классы: • особо малый (до 5 м); • малый (6—7,5 м); • средний (8,5—10 м); • большой (11—12 м); • особо большой (16,5—24 м). Грузовые автомобили, прицепы и полуприцепы в зависимости от полной массы подразделяются на следующие основные классы (без наименования): менее 1,2; 1,2—2; 2-8; 8—14; 14—20; 20—40; свыше 40 т. Классификацией грузовых автомобилей с бортовой платформой по грузоподъемности выделены следующие классы: • особо малый (менее 1 т); • малый (1—3 т); • средний (3—8 т); • большой (8—15 т); • особо большой (15—26 т); • сверх особо большой (свыше 26 т). Специальные автомобили выполняют преимущественно нетранспортные работы. К ним относят пожарные автомобили, автолавки, автомобили с компрессорными, буровыми установками, автокраны, уборочные, автомобили скорой медицинской помощи. Специализированные автомобили учитывают специфику груза (сыпучие, жидкие, крупногабаритные и т. д.). К ним относятся: самосвалы, фургоны, цистерны, панелевозы, контейнеревозы и т. п. Автомобили для буксирования прицепов и полуприцепов называются автомобиля ми -тягачами. Автомобиль-тягач или стандартный грузовой автомобиль вместе с одним или несколькими прицепами образуют автопоезд. По приспособленности к дорожным условиям различают автомобили обычной и повышенной проходимости. Автомобили по общему числу колес и ведущих колес условно обозначают формулой, где первая цифра — число колес автомобиля, вторая — число ведущих колес.
6 Введение Каждое сдвоенное ведущее колесо считается как одно целое. Например, колесной формулой 4x2 обозначен двухосный автомобиль с одной ведущей осью (ЗИЛ-431410), 6x6 — трехосный автомобиль со всеми ведущими осями (ЗИЛ-131), 6 х 4 — трехосный автомобиль с двумя ведущими осями (КамАЗ). По роду потребляемого топлива и типу двигателя автомобили подразделяются на бензиновые, дизельные, работающие на альтернативных топли- вах (газогенераторные, газобалонные), электрические (электромобили), паровые, газотурбинные, а также автомобили с комбинированными силовыми установками, например двигатель внутреннего сгорания (ДВС) электрический двигатель. Каждой модели автомобиля (прицепа, полуприцепа) присваивается индекс, состоящий из четырех цифр. Первая цифра обозначает класс автомобиля (прицепа, полуприцепа), по рабочему объему двигателя для легковых автомобилей, по длине для автобусов и по полной массе для грузовых автомобилей (табл. 1). Таблица 1. Индексация автомобилей в соответствии со значениями определяющего показателя Легковые автомобили Рабочий объем двигателя, л Менее 1,099 1,1-1,799 1,8-3,499 3,5 и более Индекс \ 21~~ 31 41 Автобусы 1 Габаритная длина, м Менее 5 6-7,5 8-10 6,5-24 . . Индекс 22 32 Грузовые автомобили Полная масса Менее 1,2 1-22,0 42 ' 2-8,0 52 8-14 62 , 1 14-20 20-40 40 и более Индекс автомобилей с бортовой платформой 23 33 43 53 63 __^ седельных тягачей 14 24 34 44 54 64 74 самосвалов 15 25 35 45 55 65 75 цистерн 16 26 36 46 56 фургонов 27 37 47 57 66 67 76 специ- 1 альных автомо-1 билей 1 19 | 29 39 49 59 69 79 В основу деления классов на виды положен признак эксплуатационного назначения автомобиля. Установлены следующие виды автомобилей (прицепов, полуприцепов) по второму знаку четырехзначного цифрового индекса модели: 1 — легковые; 2 — автобусы; 3 — грузовые бортовые; 4 — седельные тягачи (резерв); 5 — самосвалы; 6 — цистерны; 7 — фургоны; 8 — резерв; 9 — специальные. Третья и четвертая цифры обозначают номер базовой модели.
Введение 7 Для обозначения модификации модели вводится пятая цифра — порядковый номер модификации. Перед цифровым индексом ставится буквенное обозначение предприятия-изготовителя. В зависимости от полной массы прицепного состава для него установлены группы индексов модели (третий и четвертый знаки четырехзначного индекса модели прицепов, полуприцепов и роспусков), приведенные в табл. 1. Модификации модели имеют в обозначении пятую цифру.
Раздел I ДВИГАТЕЛЬ Глава 1 Общие сведения Автомобиль состоит из трех основных частей: кузова, двигателя и шасси. Кузов грузового автомобиля состоит из кабины водителя и платформы. Двигатель — машина, преобразующая какой-либо вид энергии в механическую работу. На большинстве современных автомобилей установлены поршневые двигатели внутреннего сгорания (ДВС), в которых часть теплоты, выделяющейся при сгорании топлива в замкнутой рабочей полости, преобразуется в механическую работу. Первый работоспособный поршневой двигатель внутреннего сгорания был построен французским механиком Ленуаром в 1860 г. Двухтактный двигатель с золотниковым распределением работал на светильном газе с воспламенением от электрической искры без предварительного сжатия рабочей смеси в цилиндре. В 1877 г. немецкий механик Н. Отто осуществил предварительное сжатие газовоздушной смеси в цилиндре, благодаря чему эффективность двигателей резко возросла. В 1892 г. немецкий изобретатель Р Дизель получил патент на двигатель внутреннего сгорания нового типа, рассчитанный на использование жидкого топлива. Он предложил нагревать воздух в цилиндре путем сжатия до температуры, при которой мелкораспыленное впрыскиваемое топливо могло бы испаряться, окисляться, самовоспламеняться и сгорать по мере поступления в цилиндр. Такой двигатель был впервые построен в 1899 г. на заводе Э. Нобеля в Петербурге (ныне «Русский дизель»). В 1957 г. немецкий инженер Ф. Ванкель создал роторно-поршне вой двигатель. В отличие от поршневых двигателей, где возвратно-поступательные движения поршня преобразуются во вращательное движение коленчатого вала, в роторно-поршневом двигателе (РПД) основной рабочий орган — треугольный поршень совершает вращательное движение. На каждой грани поршня имеется камера сгорания. За полный
Глава 1. Общие сведения 9 оборот поршня в каждой из трех полостей последовательно совершаются все процессы рабочего цикла. Однако массовое применение данный двигатель не получил из-за низкой экономичности и высокой токсичности. В 1897 г. по проекту инженера Кузьминского была построена газовая турбина. Газотурбинные двигатели (ГТД) используют в стационарных силовых установках, в авиации, на водном и железнодорожном транспорте. Начиная с 50-х годов XX века ГТД применяются на автомобильном транспорте. Через проточную часть ГТД проходит непрерывный поток газа. Последовательность процессов, образующих термодинамический цикл (впуск, сжатие, сгорание, расширение и выпуск), осуществляется, в отличие от поршневых двигателей, в специально предназначенных для этого автономных агрегатах: сжатие — в компрессоре, сгорание — в камере сгорания, расширение — в турбинах. В поршневых двигателях эти процессы осуществляются в одном замкнутом объеме — цилиндре. Уже два столетия ведутся работы по созданию и совершенствованию конструкций двигателей. Рассматриваются различные направления, ищется оптимальная конструкция для создания высокоэффективного двигателя. Так, еще в 1816 г. шотландский пастор Р Стирлинг создал двигатель внешнего сгорания (воздушную машину), который работал на перепаде температур. Его цикл близок к идеальному циклу Карно, а КПД равен приблизительно 60 % (у современных двигателей от 38 до 42 %). В настоящее время созданы лишь опытные конструкции стирлинг-двигателей для автомобилей и судов. Возможно, это двигатель будущего. Паровой двигатель использовался на автомобилях в начале XX века, однако работы над его совершенствованием продолжаются и сегодня. Ведутся разработки и по использованию на автомобилях электродвигателей, но возникают такие сдерживающие факторы для широкого их применения, как необходимость зарядных станций, недостаточная мощность электромобилей и т. д. 1.1. Назначение и классификация двигателей Двигатель — источник энергии, преобразующейся в механическую работу, обеспечивающую движение автомобиля. Требования предъявляемые к двигателям: • низкий уровень шума; • соответствие требованиям международных норм по токсичности отработавших газов; • высокая экономичность; • компактность; • простота и безопасность в обслуживании; • высокие мощностные показатели.
10 Раздел L Двигатель Двигатели внутреннего сгорания могут быть классифицированы по следующим признакам; • по применяемому топливу — двигатели, работающие на жидком топливе, газовые и газожидкостные; • по способу смесеобразования — с внешним и внутренним смесеобразованием; • по способу подачи топлива — с карбюрацией, под давлением впрыска (моновпрыск, центральный, многоточечный); • по способу осуществления рабочего цикла — четырехтактные и двухтактные; • по способу воспламенения горючей смеси — с самовоспламенением от сжатия и с принудительным воспламенением от электрической искры; • по способу наполнения рабочего цилиндра — двигатели без наддува и с наддувом; • по числу цилиндров; • по расположению цилиндров — рядные V- и W-образные, а также вертикальные, с наклоном, горизонтальные, оппозитные; • по способу охлаждения — с жидкостным и воздушным охлаждением; • по степени быстроходности — тихоходные (со средней скоростью поршня до 10 м/с) и быстроходные (со средней скоростью поршня выше 10 м/с). 1.2. Устройство и основные параметры двигателя Поршневой двигатель внутреннего сгорания состоит из следующих механизмов и систем: • кривошипно-шатунный механизм (КШМ); • газораспределительный механизм (ГРМ); • система охлаждения; • смазочная система; • система питания; • система зажигания (в карбюраторном двигателе); • система электрического пуска двигателя. В поршневом ДВС (рис. 1) преобразование энергии происходит в замкнутом объеме, который образован цилиндром, крышкой (головкой) цилиндра и поршнем. В карбюраторном двигателе горючая смесь вводится в цилиндр через впускной клапан, смешиваясь с остатками отработавших газов — образует рабочую смесь, которая сжимается поршнем и воспламеняется. Образовавшиеся при сгорании газы перемещают поршень, который через шатун передает усилие на кривошип коленчатого вала, поворачивая его вокруг оси. Отработавшие газы вытесняются при обратном движении поршня через выпускной клапан. Таким образом, тепловая энергия преобразуется в механическую, а возвратно-поступательное движение — во вращательное как наиболее удобный для трансформации вид движения.
Глава 1. Общие сведения 11 Рис. 1. Схема четырехтактного одноцилиндрового карбюраторного двигателя: / — распределительный вал; 2 — толкатель; 3 — цилиндр; 4 — поршень; 5 — штанга; 6 — впускной клапан; 7 — коромысло; 8 ~ свеча зажигания; 9 — выпускной клапан; 10 — поршневые кольца; 11— шатун; 12 — коленчатый вал; 13 — поддон При вращении коленчатого вала поршень дважды за один оборот останавливается и меняет направление движения. Основные параметры двигателей Верхняя мертвая точка (ВМТ) — крайнее верхнее положение поршня (рис. 2). Нижняя мертвая точка (НМТ) — крайнее нижнее положение поршня. Радиус кривошипа — расстояние от оси коренной шейки коленчатого вала до оси его шатунной шейки. Ход поршня S — расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота). ВМТ[ vA ( \\ Л У \\\ а) б) Рис. 2. Основные положения кривошипно-шатунного механизма: a — ВМТ; б — НМТ; Vc — объем камеры сгорания; V/, — рабочий объем цилиндра; D — диаметр цилиндра; S — ход поршня
12 Раздел L Двигатель Ход поршня S и диаметр D цилиндра обычно определяют размеры двигателя. Такт — часть рабочего цикла, происходящая за один ход поршня. Объем камеры сгорания — объем пространства над поршнем при его положении в ВМТ. Рабочий объем цилиндра объем пространства, освобождаемого поршнем при перемещении его от ВМТ к НМТ. Полный объем цилиндра — объем пространства над поршнем при нахождении его в НМТ. Очевидно, что полный объем цилиндра равен сумме рабочего объема цилиндра и объема камеры сгорания. Степень сжатия е — отношение полного объема цилиндра к объему камеры сгорания. Индикаторная мощность Nt мощность, развиваемая газами в цилиндре. Эффективная (действительная) мощность Ne — мощность, развиваемая на коленчатом валу двигателя. Эффективная мощность Ne меньше индикаторной Л^ так как часть последней затрачивается на трение и на приведение в движение вспомогательных механизмов. Эта мощность называется мощностью механических потерь NM. Механический КПД (коэффициент полезного действия) двигателя г|м — отношение эффективной мощности к индикаторной: Индикаторный КПД rj, представляет собой отношение теплоты (?„ эквивалентной индикаторной работе, ко всей теплоте Q, введенной в двигатель с топливом. Эффективный КПД це — отношение количества теплоты Q2, превращенного в механическую работу на валу двигателя, ко всему количеству теплоты Q,, подведенному в процессе работы. Среднее эффективное давление ре — произведение среднего индикаторного давления pt (давление, действующее на поршень в течение одного хода поршня) на механический КПД г|м. Удельный индикаторный расход топлива qi — количество топлива, расходуемого в двигателе для получения в течение 1 ч индикаторной мощности 1 кВт. Удельный эффективный расход топлива ge — количество топлива, которое расходуется в двигателе для получения в течение 1 ч 1 кВт эффективной мощности. 1.3. Рабочие циклы ДВС Рабочий цикл — последовательность процессов, периодически повторяющихся в двигателе. Цикл может быть осуществлен либо за два (двухтактный), либо за четыре (четырехтактный) такта.
Глава L Общие сведения 13 Рабочий цикл двигателя включает в себя: • впуск — заполнение цилиндра свежим зарядом; • сжатие интенсифицирует процесс сгорания, а также предопределяет более глубокое последующее и возможную полноту использования теплоты, выделяющейся при сжигании топлива в цилиндре; • расширение — рабочая смесь сгорает, газы, стремясь расшириться, перемещают поршень от ВМТ к НМТ; • выпуск — очистка цилиндра от отработавших газов. 1.4. Карбюраторный четырехтактный двигатель При рассмотрении рабочего цикла двигателя (рис. 3) условно принято, что каждый такт начинается и заканчивается при нахождении поршня в ВМТ или НМТ. Первый такт — впуск. Поршень перемещается с ВМТ в НМТ, освобождающаяся надпоршневая полость цилиндра заполняется горючей смесью через открытый впускной клапан из-за возникающего разрежения. Горючая смесь, поступая в цилиндр, смешивается с остатками отработавших газов от предыдущего цикла, образует рабочую смесь. В конце такта давление в цилиндре составляет 0,07—0,95 МПа, температура — 350—390 К, коэффициент наполнения цилиндра — 0,6—0,7. V а) 6) в) г) Рис. 3. Работа четырехтактного одноцилиндрового карбюраторного двигателя: a — впуск в цилиндр рабочей смеси; б — сжатие рабочей смеси; в — расширение газов; г — выпуск отработавших газов; / — коленчатый вал; 2 — распределительный вал; 3 — поршень; 4 — цилиндр; 5 — впускной трубопровод; 6 — карбюратор; 7— впускной клапан; 8 — свеча зажигания; 9 — выпускной клапан; 10 — выпускной трубопровод; 11 — шатун; 12 — поршневой палец; 13 — поршневые кольца
14 Раздел L Двигатель Второй такт — сжатие. Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Объем надпоршневой полости уменьшается. Рабочая смесь сжимается. Сжатие сопровождается повышением давления и температуры. Степень сжатия регламентируется детонационной стойкостью топлива. В конце такта давление составляет 1,2—1,7 МПа, а температура — 600—700 К. Третий такт — расширение. В начале такта при сгорании рабочей смеси, которая воспламеняется от искрового разряда свечи зажигания, выделяется значительное количество теплоты, резко увеличивается температура и давление. Вследствие давления газов поршень перемещается от ВМТ к НМТ. Газы расширяются и совершают полезную работу. В начале расширения давление газов составляет 4—6 МПа, температура — 2500—2800 К. В конце расширения давление в цилиндре составляет 0,3—0,5 МПа, температура - 1100—1800 К. Четвертый такт — выпуск. Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в окружающую среду. В конце выпуска давление в цилиндре составляет ОД05—0,12 МПа, а температура — 850-1200 К. Степень очистки цилиндра от отработавших газов характеризуется коэффициентом остаточных газов (отношение массы остаточных газов к массе свежего заряда). Для современных ДВС коэффициент остаточных газов составляет 0,08—0,2, он возрастает при увеличении частоты вращения коленчатого вала. Рабочий цикл двигателя заканчивается четвертым тактом. При дальнейшем движении поршня цикл повторяется в той же последовательности. Коленчатый вал в течение четырех тактов поворачивается на 720°, т. е. совершает два оборота. В двигателях, работающих по четырехтактному циклу, полезная работа совершается только в период такта расширения (рабочего хода), когда поршень перемещается под действием расширяющихся газов, поворачивая коленчатый вал на 180° Остальные три такта являются подготовительными и выполняются при поворачивании коленчатого вала на 540° за счет инерции маховика и работы других цилиндров (в многоцилиндровых двигателях) 1.5. Четырехтактный дизель Рабочий цикл дизеля (рис. 4) отличается тем, что при такте впуска в цилиндр двигателя поступает очищенный в воздухоочистителе воздух, а не горючая смесь, как в карбюраторном двигателе. Первый такт — впуск. Поршень перемещается от ВМТ к НМТ, через открытый впускной клапан в цилиндр поступает очищенный воздух (из-за разрежения, создаваемого поршнем). Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура повышается и в конце такта впуска достигает 300—320 К, а давле-
Глава L Общие сведения 15 Рис. 4. Работа четырехтактного одноцилидрового дизеля: а — впуск воздуха; б — сжатие воздуха; в — расширение газов (рабочий ход); г — выпуск отработавших газов; / — цилиндр; 2 — топливный насос; 3 — поршень; 4 — форсунка; 5 — впускной клапан; 6 — выпускной клапан ние 0,08—0,09 МПа. Коэффициент наполнения цилиндра 0,9 и выше, т. е. больше, чем у карбюраторного двигателя. Второй такт — сжатие. Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и в конце такта составляют соответственно 3—5 МПа и 800—900 К. Степень сжатия регламентируется прочностью деталей КШМ и равна 17—21. Третий такт — расширение (рабочий ход). В конце такта сжатия (20—30° угла поворота коленчатого вала до прихода поршня в ВМТ) с помощью насоса через форсунку в цилиндр под высоким давлением (15—20 МПа) в мелкораспыленном виде впрыскивается порция топлива. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с нагретым воздухом и воспламеняются. При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличиваются давление и температура образовавшихся газов. В начале такта расширения давление газов составляет 7—8 МПа, а температура 2100—2300 К. Под действием давления поршень перемещается от ВМТ к НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют 0,2—0,4 МПа и 800—1200 К соответственно. Четвертый такт — выпуск. Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11—0,12 МПа, температура 850—1200 К. После этого рабочий цикл дизеля повторяется. В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и расширения. Рабочий цикл происходит за 360° (один оборот коленчатого вала).
16 Раздел L Двигатель При движении поршня от ВМТ к НМТ одновременно происходят процессы расширения и выпуска с продувкой цилиндра, а при обратном движении от НМТ к ВМТ впуск и сжатие. Изменения параметров цикла (давление и температура) соответствуют изменениям параметров четырехтактного двигателя. Сравнение рабочих циклов четырех- и двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частоте вращения коленчатого вала мощность двухтактных двигателей выше в 1,5—1,7 раза. Он проще по конструкции и компактнее. К недостаткам двухтактного двигателя следует отнести ограниченное время газообмена, что ухудшает очистку цилиндра от отработавших газов, увеличивает потери части свежего заряда, снижает экономичность. 1.6. Сравнение дизелей и карбюраторных двигателей На современных автомобилях применяются как карбюраторные двигатели, так и дизели. По сравнению с карбюраторными двигателями дизели имеют следующие преимущества: • более высокая топливная экономичность (на 30—40 %); • больше крутящий момент (на 15—20 %) при одинаковой мощности; • меньшая пожароопасность; • меньшая токсичность; • высокая надежность. К недостаткам дизеля, при сравнении их с карбюраторными двигателями, можно отнести: • большую массу и габаритные размеры при одинаковой мощности; • более трудный пуск, особенно в зимнее время года; • повышенный уровень шума; • высокую стоимость топливной аппаратуры; • меньшую мощность; • значительное содержание сажи в отработавших газах. 1.7. Число и расположение цилиндров Одноцилиндровый четырехтактный двигатель имеет значительную неравномерность вращения коленчатого вала, которая вызвана тем, что за два оборота коленчатого вала только в течение одного полуоборота колен- чатый вал вращается вследствие давления газов, а три полуоборота — за счет энергии, накопленной маховиком. Причем во время рабочего хода вращение коленчатого вала ускоренное, а во время подготовительных ходов — замедленное, что вызывает повышенную вибрацию двигателя, которая может быть лишь частично уменьшена вследствие значительного момента инерции маховика.
Глава ]. Общие сведения 17 Повышения равномерности работы двигателя можно добиться увеличением числа цилиндров, так как при этом может быть увеличено число рабочих ходов, приходящихся на один оборот коленчатого вала. Цилиндры двигателя могут располагаться (рис. 5 и 6): • вертикально в один ряд (рядное расположение); • горизонтально в один ряд; • однорядно с наклоном от вертикали; • двухрядно V-образно; • оппозитно. ,1 2 w/чл^/лжа а; б) в) 1Г7~ 3 4' Г/^"" Рис. 5. Варианты различною расположения цилиндров двигателей: а — однорядного; б — однорядного с наклоном от вертикали; в — V-образного; г — с противоположно лежащими цилиндрами; / — цилиндр; 2 — головка цилиндров; 3 — блок-картер; 4 — поддон Рис. 6. Примеры различного числа и расположения цилиндров двигателей: а — четырехтактный V-образный шестицилиндровы ; б — четырехтактный V-образный восьмицилиндровый ; в — четырехтактный рядный четырехцилиндровый; г - четырехтактный рядный шестицилиндровый
18 Раздел L Двигатель При V-образном расположении цилиндров двигатель имеет более жесткую конструкцию, меньшие габаритные размеры (длину) и массу, чем рядный двигатель той же мощности. К недостаткам V-образных двигателей необходимо отнести значительную ширину и более сложную конструкцию. Равномерность вращения коленчатого вала многоцилиндрового двигателя обеспечивается при равномерном чередовании рабочих ходов поршней. Последовательное чередование одноименных тактов в различных цилиндрах за рабочий цикл называется порядком работы двигателя. При выборе порядка работы двигателя стремятся обеспечивать равномерное распределение нагрузки на коленчатый вал. В четырехцилиндровом двигателе (рис. 7 и 8) угол чередования рабочих ходов 180° (720° 4). Это определяет конструкцию коленчатого вала и угол между шатунными шейками, который должен равняться 180° Рис. 7. Продольный разрез двигателя автомобиля «Волга»: / — поддон; 2 — шкив; 3 — храповик; 4 — термостат; 5 — выпускной клапан; 6 — впускной клапан; 7 — распорная пружина; 8 — головка блока цилиндров; 9 — блок цилиндров; 10 — маховик; 11 — распределительный ват; 12 — коленчатый вал; 13 — масляный насос; 14 — маслоприемник; 15 — шатун; 16 — поршневые кольца; 17 — поршневой палец
Глава 1. Общие сведения 19 12- 8. Поперечный разрез двигателя автомобиля «Волга»: / — поддон; 2 — коленчатый вал; шатун; 4 — блок цилиндров; 5 — поршень; 6 — гильза цилиндра; 7 — выпускной трубо- эд; 8— впускной трубопровод; 9 — карбюратор; 10 — коромысло; 11 — ось коромысел; распределитель зажигания; 13 — штанга; 14 — указатель уровня масла; 15 — распределительный вал; 16— стартер; 17 — маслоприемник
20 Раздел L Двигатель Порядок работы четырехцилиндрового двигателя может быть 1-3-4-2 или 1-2-4-3. В шестицилиндровом рядном двигателе шатунные шейки коленчатого вала расположены в трех плоскостях под углом 120° порядок работы 1-5-3-6-2-4. В V-образных четырехтактных двигателях на равномерность чередования рабочих ходов влияет не только расположение шатунных шеек коленчатого вала, но и угол между осями цилиндров. Для получения оптимальной равномерности хода двухрядного двигателя угол, называемый углом Рис. 9. Поперечный разрез дизеля ЯМЗ-236: / — поддон; 2— коленчатый вал; 3 — шатун правого (по ходу автомобиля) ряда цилиндров; 4 ~ стартер; 5 — поршень; 6 — гильза цилиндра; 7 — выпускной трубопровод; 8 — форсунка; 9 — топливный насос высокого давления; 10 — воздухоочиститель; // — переходник впускных трубопроводов; 12 — маслозаливная горловина; 13 — впускной клапан; 14 — головка блока цилиндров; 15 — блок цилиндров; 16 — распределительный вал; 77— шатун левого (по ходу автомобиля,) ряда цилиндров
Глава L Общие сведения 21 развала, должен быть в два раза меньше угла между шатунными шейками. В этом случае угол чередования рабочих ходов определяется по формуле 720/2/, где / — число цилиндров. В шестицилиндровых V-образных двигателях (рис. 9) с углом развала 90° и углом между шатунными шейками 120° порядок работы 1—4—2—5—6—3. Особенностью данного двигателя является крепление на одной шатунной шейке двух шатунов. В этом случае чередование одно- Рис. 10. Поперечный разрез дизеля ЗИЛ-645 автомобиля ЗИЛ-433100: / — пробка маслозалив- ного патрубка; 2 — форсунка: 3 — топливопровод высокого давления; 4 — впускной воздухопровод; 5 — штанга; 6 — крышка клапанов; 7 — впускной клапан; 8 — головка блока цилиндров; 9 — выпускной газопровод; 10 — поршень: 11 — компрессионное кольцо; 12 — блок-картер; 13 — маслосъемное кольцо; 14 — резиновое уплотнение; 75 — шатун; 16 — болт-стяжка; 17 — коленчатый вал; 18 — фильтр тонкой очистки масла; 19 — гильза цилиндра; 20— пружина клапана; 21 — выпускной клапан; 22 — коромысло
22 Раздел L Двигатель именных тактов в цилиндрах неравномерно через 90 и 150° На таких двигателях для повышения равномерности хода устанавливают маховик с повышенным моментом инерции (на 60—70 % больше, чем у рядного двигателя). Восьмишишнлровые V-образные двигатели ЗИЛ-645 (рис. 10 и 11), КамАЗ-740.10 (рис. 12 и 13), ГАЗ-53-12 (рис. 14) имеют угол развала 90е Чередование одноименных тактов осуществляется через 90° Шатунные шейки коленчатого вала располагаются под углом 90° Перекрытие рабочих ходов в этом случае составляет также 90° что обеспечивает равномерное вращение коленчатого вала. Порядок работы цилиндров двигателей 18 17 Рис. 11. Продольный разрез дизеля ЗИЛ-645 автомобиля ЗИЛ-433100: 1 — муфта отключения вентилятора; 2 — шкив насоса системы охлаждения; 3 — ремень привода компрессора; 4 — патрубок системы охлаждения; 5 — зубчатое колесо привода топливного насоса высокого давления; 6 ~ муфта; 7— топливный насос высокого давления; 8 — топливоподкачивающий насос; 9 — ручной топливоподкачивающий насос; 10 — распределительный вал; // — маховик; 12 — уплотнительная манжета; 13 — вкладыши коренного подшипника; 14 — шайба упорного подшипника; 75 — форсунка; 16 — поддон; 17 — маслоприемник; 18 — пробка сливного отверстия; 19 — насос смазочной системы; 20 — вкладыши шатунного подшипника; 21 — уплотнительная манжета; 22 — демпфер шкива коленчатого вала; 23 — ремень привода насоса рулевого гидроусилителя; 24 — шкив коленчатого вала; 25 — натяжной шкив; 26 — насос системы охлаждения; 27 — вентилятор
Глава 1. Общие сведения 23 Рис. 12. Продольный разрез дизеля КамАЗ-740.10 автомобиля КамАЗ-5320: / — вентилятор; 2 — гидромуфта привода вентилятора; 3 — генератор; 4 — ручной топливоподкачиваюший насос; 5 — топливный насос высокого давления; 6 — компрессор; 7 — фильтр тонкой очистки топлива; 8 — зубчатое колесо привода топливного насоса; 9 — распределительный вал; 10 — коленчатый вал; 11 — маховик; 12 — шатунная шейка коленчатого вала; 13 — маслоприем- ник; 14 — поддон; 15 — масляный насос
24 Раздел L Двигатель 10 11 Рис. 13. Поперечный разрез двигателя КамАЗ-740.10 автомобиля КамАЗ-5320: / — поддон; 2 — полнопоточный масляный фильтр; 3 — коленчатый вал; 4 — шатун правого (по ходу автомобиля) ряда цилиндров; 5 — поршень с поршневыми кольцами; 6 — головка блока цилиндров; 7 — форсунка; 8 — коромысло; 9 — впускной трубопровод; 10 — ручной топливоподка- чивающий насос; И — топливный насос высокого давления; 12 — выпускной клапан; 13 — выпускной трубопровод; 14 — поршневой палец; 15 — распределительный вал; 16 — шатун левого (по ходу автомобиля) ряда цилиндров; 17 — масляный насос
Глава 2. Кривошипно-шатунный механизм 25 Рис. 14. Продольный разрез двигателя автомобиля ГАЗ-53-12: 1 — поддон; 2— шкив коленчатого вала; 3 — храповик; 4 — распределительный вал; 5 — датчик ограничителя частоты вращения; 6 — водяной насос; 7 — вентилятор; 8 — полнопоточный масляный фильтр; 9 — карбюратор; 10 — распределитель зажигания; 11 — блок цилиндров; 12 — маховик; 13 — коленчатый вал; 14 — крышка коренного подшипника; 15 — шатун первого цилиндра (правого по ходу ряда); 16 — шатун пятого цилиндра (левого по ходу ряда) Глава 2 Кривошипно-шатунный механизм Кривошипно-шатунный механизм (КШМ) (рис. 15) преобразует возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала. Детали, составляющие кривошипно-шатунный механизм, можно разделить на две группы: подвижные и неподвижные. Подвижные детали: поршень, поршневые кольца, поршневые пальцы, шатуны, коленчатый вал, маховик. Неподвижные детали: блок-картер, головка блока цилиндров, гильзы цилиндров. Имеются также фиксирующие и крепежные детали. 2.1. Неподвижные детали Блок-картер является остовом двигателя, в котором размещаются и работают подвижные детали, к нему крепятся практически все навесные агрегаты и приборы, обеспечивающие работу двигателя.
26 Раздел L Двигатель Рис. 15. Детали кривошипно-шатунного механизма: а — V-образного карбюраторного двигателя; б — V-образного дизеля; в — соединение головки блока цилиндров, гильзы и блока цилиндров дизеля КамАЗ-740; 7 — крышка блока распределительных зубчатых колес; 2 — прокладка головки блока цилиндров; 3 — камера сгорания; 4 — головка блока цилиндров; 5 — гильза цилиндра; 6 и 19 — уплотнительные кольца; 7 — блок цилиндров; 8 — резиновая прокладка; 9 — головка блока цилиндров; 10 — прокладка крышки; 11 — крышка головки блока цилиндров; 12 и 13 — болты крепления крышки и головки блока цилиндров; 14 — патрубок выпускного коллектора; 75— болт-стяжка; 16 — крышка коренного подшипника; 77— болт крепления крышки коренного подшипника; 18 ~ стальное опорное кольцо; 20 — стальная прокладка головки блока цилиндров Блок-картер отливают из легированного чугуна или алюминиевых сплавов. Блок-картер разделен на две части горизонтальной перегородкой. В нижней части в вертикальных перегородках имеются разъемные отверстия крепления коленчатого вала, в верхней гильзы цилиндров. Блок-картер может быть отлит вместе с цилиндрами («сухие» гильзы), либо иметь вставные сменные гильзы, непосредственно омываемые охлаждающей жидкостью, так называемые «мокрые» гильзы. Также в блок-картере выполнены гладкие отверстия под коренные опоры распределительного
Глава 2. Кривошипно-шатунный механизм 27 вала, под толкатели ГРМ, имеются гладкие и резьбовые отверстия и приваленные поверхности крепления деталей и приборов. Гильзы цилиндров. Гильзы цилиндров являются направляющими для поршня и вместе с головкой образуют полость, в которой осуществляется рабочий цикл. Изготовляют гильзы литьем из специального чугуна. На наружной поверхности имеется одна или две посадочные поверхности крепления гильзы в блоке цилиндров. Внутреннюю поверхность цилиндра подвергают закалке с нагревом ТВЧ и тщательно обрабатывают, получая «зеркальную» поверхность. Верхняя часть цилиндра наиболее нагружена, так как здесь происходит сгорание рабочей смеси, сопровождаемое резким повышением давления и температуры. Кроме того, в этой зоне происходит перекладка поршня, сопровождаемая ударными нагрузками на стенки цилиндра. Для повышения износостойкости верхней части цилиндров в карбюраторных двигателях (ЗМЗ-53 и ЗИЛ-508.10) применяют вставки из специального износостойкого чугуна, запрессованные в верхней части цилиндра. Толщина вставки 2—4 мм, высота 40—50 мм, используемый материал — аустенитный чугун. «Мокрые» гильзы могут быть установлены в блок-картер с центровкой по одному или двум поясам. Первый способ применяется для постановки гильзы в алюминиевые, второй — в чугунные блоки. Для уплотнения нижнего центрирующего пояска «мокрых» гильз применяют резиновые кольца. Гильзы с центровкой по одному нижнему поясу уплотняются одной медной прокладкой под торцевой плоскостью буртика. Головка блока цилиндров закрывает цилиндры и образует верхнюю часть рабочей полости двигателя, в ней частично или полностью размещаются камеры сгорания. Головки блока цилиндров отливают из легированного серого чугуна или алюминиевого сплава. Чаще всего они являются общими для всех цилиндров, образующих ряд. В головках блока цилиндров размещаются гнезда и направляющие втулки клапанов, впускные и выпускные каналы. Их внутренние полости образуют рубашку для охлаждающей жидкости. В верхней части имеются опорные площадки для крепления деталей клапанного механизма. В конструкциях с верхним расположением распределительного вала предусмотрены соответствующие опоры. Для уплотнения стыка головки блока цилиндров и блока цилиндров применяют сталеасбестовую уплотняющую прокладку, предотвращающую прорыв газов наружу и исключающую проникновение охлаждающей жидкости и масла в цилиндры. В двигателях воздушного охлаждения головки блока цилиндров делают оребренными. Причем ребра располагают по движению потока охлаждающего воздуха. Так, чтобы обеспечивался более эффективный теплоотвод. Поддон картера закрывает КШМ снизу и одновременно является резервуаром для масла. Поддоны изготовляют штамповкой из листовой стали или отливают из алюминиевых сплавов. Внутри поддонов могут выполняться лотки и перегородки, препятствующие перемещению и взбалтыванию масла при движении автомобиля по неровным дорогам. Привалочная поверхность, стыкующаяся с блок-картером, имеет от- бортовку металла и усиливается для придания жесткости стальной полосой, приваренной по периметру. В нижней точке поддона приваривается
28 Раздел L Двигатель бобышка с резьбовым отверстием, которое закрывают пробкой с магнитом для улавливания металлических крошек, образующихся вследствие изнашивания двигателей. 2.2. Подвижные детали Поршневая группа (рис. 16) включает в себя поршень, поршневые кольца, поршневой палец с фиксирующими деталями. Поршень воспринимает усилие расширяющихся газов при рабочем ходе и передает его через шатун на кривошип коленчатого вала; осуществляет подготовительные такты; уплотняет надпоршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного материала. Шатунно-поршневые группы различных двигателей приведены на рис. 16. Поршни. Форма и конструкция поршня, включая днише поршня и отверстие под поршневой палец, в значительной степени определяются формой камеры сгорания. а) 14 б) в) Рис. 16. Шатун но-поршневые группы различных двигателей: дизеля ЯМЗ; б — двигателя автомобиля ГАЗ-53А; в — двигателя автомобиля ГАЗ-53-12 (поршни в сооре с шатуном устанавливаются соответственно в первый, второй, третий и четвертый цилиндры правого блока и в пятый, шестой, седьмой и восьмой цилиндры левого блока); / стопорное кольцо; 2 — поршневой палец; 3— маслосъемные кольца; 4— компрессионные кольца; 5 — камера сгорания в днище поршня; 6 — днище поршня; 7 — головка поршня; 8 юбка; 9 поршень; 10— распылитель масла (форсунка); 11 — шатун; 72 вкладыши; 13 замковая шайба; 14 длинный болт; 15 — короткий болт; 16 — крышка шатуна; 17 втулка ь ювке шатуна, 18 — номер на шатуне; 19 — метка на крышке шатуна; 20 - шатунный болт
Глава 2. Кривошипно-шатунный механизм 29 Поршень состоит из головки поршня и направляющей части — юбки поршня. С внутренней стороны имеются приливы — бобышки с гладкими отверстиями под поршневой палец. Для фиксации пальца в отверстиях проточены канавки под стопорные кольца. В зоне выхода отверстий на внешних стенках юбки выполняются местные углубления, где стенки юбки не соприкасаются со стенками цилиндров. Таким образом получаются так называемые холодильники. Для снижения температуры нагрева направляющей поршня в карбюраторных двигателях головку поршня отделяют две поперечные симметричные прорези (двигатели ЗИЛ-508.10 и ЗМЗ-53.11), которые препятствуют отводу теплоты от днища. Нагрев, а следовательно, и тепловое расширение поршня по высоте неравномерны. Поэтому поршни выполняют в виде конуса овального сечения. Головка поршня имеет диаметр меньше, чем направляющая. В быстроходных двигателях, особенно при применении коротких шатунов, скорость изменения боковой силы довольно значительна. Это приводит к удару поршня о цилиндр. Чтобы избежать стуков, при перекладке поршневые пальцы смещают на 1,4—1,6 мм в сторону действия максимальной боковой силы, что приводит к более плавной перекладке и снижению уровня шума. Головка поршня состоит из днища и образующих ее стенок, в которых имеются канавки под поршневые кольца. В нижней канавке находятся дренажные отверстия для отвода масла диаметром 2,5—3 мм. Днище головки является одной из стенок камеры сгорания и воспринимает давление газов, омывается открытым пламенем и горячими газами. Для увеличения прочности днища и повышения общей жесткости головки ее стенки выполняются с массивными ребрами. Днища поршней изготовляют плоскими, выпуклыми, вогнутыми и фигурными. Форма выбирается с учетом типа двигателя, камеры сгорания, процесса смесеобразования и технологии изготовления поршней. Поршневые кольца (рис. 17) — элементы уплотнения поршневой группы, обеспечивающие герметичность рабочей полости цилиндра и отвод теплоты от головки поршня. По назначению кольца подразделяются на компрессионные — препятствующие прорыву газов в картер и отводу теплоты в стенки цилиндра, и маслосъемные обеспечивающие равномерное распределение масла по поверхности цилиндра и препятствующие проникновению масла в камеру сгорания. Изготовляются кольца из специального легированного чугуна или стали. Разрез кольца, называемый замком, может быть прямым, косым или ступенчатым. По форме и конструкции поршневые кольца дизелей делятся на трапециевидные, с конической поверхностью, с конической поверхностью и подрезом, маслосъемные, пружинящие с kX © Рис. 17. Различные компрессионные кольца и их положение в рабочем состоянии: I — прямоугольного сечения; /У — с конической наружной поверхностью; III — с фаской на внутренней стороне; IV — с выточкой на внутренней стороне
30 Раздел L Двигатель расширителем; поршневые кольца карбюраторных двигателей — на бочкообразные, с конической поверхностью со скосом, с подрезом; маслосъем- ные — с дренажными отверстиями и узкой перемычкой, составные представляют собой два стальных диска (осевой и радиальный расширители). На рис. 18 показано составное маслосъемное поршневое кольпо и его установка в головке поршня. а) б) Рис. 18. Составное маслосъемное поршневое кольцо (а) и его установка в головке поршня двигателя автомобиля ЗИЛ-130 (б)\ 1 — дискообразное кольцо; 2 — осевой расширитель; 3 — радиальный расширитель; 4 — замок кольца; 5 — компрессионные кольца; 6 — поршень; 7 — отверстие в канавке маслосъемного кольца Для повышения износостойкости первого компрессионного кольца, работающего в условиях высоких температур и граничного трения, его поверхность покрывают пористым хромом. На рис. 19 приведена работа компрессионных поршневых колец, а на рис. 20 — маслосъемных поршневых колец. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены один относительно другого на некоторый угол (90 —180°). Поршневой палец обеспечивает шарнирное соединение шатуна с поршнем. Поршневые пальцы изготовляют из малоуглеродистых сталей. Рабочую поверхность тщательно обрабатывают и шлифуют. Для уменьшения массы палец выполняют пустотелым. Шатун (см. рис. 16) шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок, действующих по его продольной оси. Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вала. Крышка нижней головки крепится с помощью шатунных болтов.
Глава 2. Кривошипно-шатунный механизм 31 Рис. 19. Работа компрессионных поршневых колец: 1 — поршень; 2 — компрессионное поршневое кольцо; 3 — цилиндр Рис. 20. Работа маслосъемных поршневых колец (сплошными стрелками показано направление движения поршня, штриховыми — масла): / — прорезь в поршневом кольце; 2 — поршневое кольпо; 3 — цилиндр; 4 — отверстие в поршне; 5 — отверстие в канавке поршневого кольца; 6 — поршень Шатун изготовляю! методом горячей штамповки из высококачественной стали. Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом, перпендикулярным к оси стержня. В двигателях марки «ЯМЗ», имеющим больший, чем диаметр цилиндра, размер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнего). Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смещения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в
32 Раздел /. Двигатель пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна. Коленчатый вал (рис. 21) воспринимает действия расширяющихся газов при рабочем ходе поршней, передаваемые шатунами, и преобразует их в крутящий момент. Кроме того, коленчатый вал обеспечивает движение поршней во время вспомогательных тактов и пуска двигателя. Коленчатые валы изготовляются штамповкой из среднеуглеродистых легированных сталей и литьем из модифицированного магнием чугуна. Коленчатый вал состоит из коренных и шатунных шеек, соединенных щеками, к которым крепятся противовесы (могут быть отлитыми как Рис. 21. Коленчатые валы: а — двигателя автомобиля ЗИЛ-130; б — дизеля ЯМЗ-236; в — дизеля КамАЗ-740; / — передний конец вала; 2 — грязеуловительная полость; 3 — шатунная шейка; 4— противовесы; 5— маслоотражатель; 6— фланец для крепления маховика; 7— коренная шейка; 8— щека; 9— гайка; 10w 15 — съемные противовесы; // — распределительное зубчатое колесо; 12 — установочный штифт; 13 — зубчатое колесо привода масляного насоса; 14 — винт; 16 — шпонка; А — величина перекрытия шеек
Глава 2. Кривошипно-шатунный механизм 33 одно целое с валом) переднего конца коленчатого вала, на котором имеются посадочный поясок крепления газораспределительного зубчатого колеса и шкива. На заднем конце коленчатого вала имеется маслоотра- жательный гребень, маслосгонная резьба и фланец (может отсутствовать) для крепления маховика. В торце имеется гладкое отверстие под подшипник для опоры ведущего вала коробки передач. В коренных шейках для масляных каналов выполнены отверстия под углом к пустотелым шатунным шейкам, где масло дополнительно очищается под действием центробежных сил. Форма коленчатого вала определяется числом и расположением цилиндров, порядком работы и тактностью двигателя. В большинстве случаев применяют полноопорные коленчатые валы, т. е. каждая шатунная шейка расположена между коренными. Для повышения износостойкости поверхностный слой коренных и ша- гунных шеек подвергают закалке на глубину 3—4 мм с нагревом ТВЧ. После термической обработки шейки валов тщательно шлифуют и полируют. Для повышения жесткости и надежности коленчатых валов применяют перекрытие шеек (см. рис. 21, размер А). На рис. 22 показаны уплотнения концов коленчатого вала. 8 9 10 11 Рис. 22. Уплотнение коленчатого вала: а — уплотнение переднего конца вала; 6 — уплотнение заднего конца вала; 1 — самоподжимная уплотнительная манжета; 2 — пылеотражатель; 3 — шкив привода водяного насоса, вентилятора и генератора; 4 — ступица; 5 — храповик; 6 — коленчатый вал; 7 — крышка блока распределительных зубчатых колес; 8 ~ передняя неподвижная шайба; 9 и 14 — штифты; 10 — блок цилиндров; // — задняя неподвижная шайба; 12 — вкладыш; 13 — крышка коренного подшипника; 15 — упорная вращающаяся шайба; 16 — шпонка; 17 — распределительное зубчатое колесо; 18 — маслоотражатель; 19 — маслоот- ражательный гребень; 20 — болт крепления маховика; 21 — маслосгонная резьба; 22 — шарикоподшипник вала сцепления; 23 — фланец; 24 — уплотнительная манжета; 25 — держатель уплотнительной манжеты; 26 — маховик
34 Раздел L Двигатель Коренные подшипники. Для коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы. Маховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала в течение подготовительных тактов, и вывода деталей КШМ из МВТ и НВТ. В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места. Маховики отливают из чугуна в виде диска с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика. 1.3. Подвеска двигателя Подвеска двигателя. При работе двигатель находится под воздействием неуравновешенных сил инерции, моментов этих сил и реактивных моментов при торможении или разгоне автомобиля. Для защиты рамы или несушего кузова от вибрации применяют упругую подвеску силового агрегата (рис. 23). Вибрационные свойства подвески двигателя определяются конструкцией упругих элементов и размещением опор. Упругие элементы подвески двигателей выполняются в виде массивных резиновых втулок или башмаков привулканизированных к каркасу. Для ограничения недопустимых продольных перемещений двигателя каркасные детали упругих элементов ориентируют таким образом, чтобы в направлении действия продольных сил резиновый вкладыш имел наибольшую жесткость, или применяют специальные тяги, которые связывают с подмоторной рамой двигатель и не допускают его перемещения.
Глава 2* Кривошипно-шатунный механизм 35 Рис. 23. Силовой агрегат автомобиля КамАЗ-5320 и его крепление: а — общий вид силового агрегата; б — передняя опора; в — задняя опора; г — поддерживающая опора; / — блок цилиндров; 2 — штифт; 3 — шпилька; 4, 8, 23 и 28 — кронштейны; 5, 15 и 19 — болты; 6 — стяжка; 7, 14 и 27 — резиновые подушки; 9 — стойка; 10 — лонжерон рамы; 11 — кронштейн задней опоры; 12 — кронштейн двигателя; 13 — картер маховика; 16 — башмак; 17 — защитный колпак; 18 — втулка; 20 — крышка; 21 — регулировочная прокладка; 22 — картер коробки передач; 24— поперечина; 25 — обойма подушки; 26— накладка подушки
36 Раздел L Двигатель Глава 3 Механизм газораспределения Механизм газораспределения служит для своевременного открытия и закрытия впускных и выпускных клапанов двигателя, обеспечивая качественное наполнение цилиндров двигателя свежим зарядом, их очистку от отработавших газов и герметизацию цилиндров при сжатии и рабочем ходе поршня. Различают клапанные и золотниковые механизмы газораспределения. В четырехтактных двигателях газообмен осуществляется с помощью клапанов, В двухтактном двигателе газообмен происходит под действием поршня, открывающего и закрывающего впускные и перепускные каналы, или посредством смешанной системы газораспределения. Клапанные механизмы газораспределения разделяют: • по месту установки клапанов (рис. 24) — верхнее расположение клапанов в головке блока цилиндров и нижнее — в блоке цилиндров; • по месту установки распределительного вала — верхнее и нижнее; • по виду привода распределительного вала (рис. 25) — зубчатый (шестеренчатый), цепной и ременный. Механизм газораспределения включает в себя привод, распределительный вал, толкатели, штанги, коромысла и клапанный механизм. Клапанный механизм состоит из клапанов, направляющих втулок, седел, клапанов, возвратных пружин с нижней и верхней опорными тарелками, сухарей, механизмов поворота клапана (двигатель ЗИЛ-508.10). 3.1. Детали механизма газораспределения Распределительный вал предназначен для своевременного открытия клапанов. Также он осуществляет привод (в карбюраторных двигателях) топливного насоса, масляного насоса, прерывателя тока низкого напряжения и датчика ограничителя максимальной частоты вращения коленчатого вала (двигатели ЗМЗ-53Л1 и ЗИЛ-508.10). Распределительный вал имеет: коренные (опорные) шейки; кулачки, расположение которых на валу обусловлено числом клапанов на цилиндр и последовательностью их открытия в зависимости от порядка работы двигателя, схемы привода, фазы газораспределения; зубчатое колесо привода прерывателя-распределителя и масляного насоса; эксцентрик привода топливного насоса. На переднем конце вала имеется шейка со шпоночным пазом под зубчатое колесо и резьбой для ее крепления. Для восприятия осевых усилий от косозубых зубчатых колес при нижнем расположении распределительного вала используются стальные упорные фланцы. С одной стороны во фланец упирается ступица зубчатого колеса привода, а с другой — торец передней опорной шейки распределительного вала. Необходимый осевой зазор при этом обеспечивается
Глава 3. Механизм газораспределения 37 Рис. 24. Механизм газораспределения: а — с нижним расположением клапанов и распределительного вала; б — с верхним расположением клапанов и нижним расположением распределительного вала; в — привод клапанов двигателя автомобиля ГАЗ-3102 «Волга»; г и д — с верхним расположением клапанов и распределительного вала автомобилей марки «ВАЗ»; / — седло клапана; 2 — клапан; 3 — направляющая втулка; 4 — пружина; 5 — сухари; 6 — тарелка пружины клапана; 7 — регулировочный болт; 8 — контргайка; 9 — толкатель; 10 — кулачок; 12 — направляющая толкателя; 12 — штанга; 13 — головка блока цилиндров; 14 — коромысло; /5— крышка головки блока цилиндров; /б— отверстие подвода масла; 17 — внутренняя пружина; 18 — внешняя пружина; 19 — опорная шайба пружины; 20 — регулировочный болт привода дополнительного клапана; 21 — пружина дополнительного клапана; 22 — шпилька; 23 — скоба крепления корпуса дополнительного клапана; 24 — маслоотражательный колпачок; 25 — уплотнительные кольца; 26 — конус дополнительного клапана; 27 ~ свеча зажигания; 28 — прокладка; 29 — дополнительный клапан; 30 — форкамера; 31 — основная камера; 32 — рокер; 33 — пружина рокера; 34 — опора; А — тепловой зазор
38 Раздел L Двигатель Рис. 25. Приводы механизма газораспределения двигателей: а — ЯМЗ-236; б — автомобилей ЗИЛ-130 и ГАЗ-53А; в — КамАЗ-740; г — автомобиля BA3-2107 «Жигули»; / — зубчатое колесо привода масляного насоса; 2 и 11 — промежуточные зубчатые колеса; 3 — распределительное зубчатое колесо коленчатого вала; 4, 7 и 10 — метки; 5 — зубчатое колесо распределительного вала; 6 и 9 — зубчатые колеса привода топливного насоса; 8 — зубчатое колесо привода вентилятора; 12 — зубчатое колесо привода насоса гидроусилителя руля; 13 — зубчатое колесо привода компрессора; 14 — ведомая ветвь цепи; 15 — башмак натяжного механизма; 16 — натяжной механизм; 77— распределительный вал; 18 — успокоитель; 19 — ведущая ветвь цепи распорным кольцом, установленным между ступицей зубчатого колеса и шейкой вала. Ширина кольца на 0,1—0,2 мм больше толщины фланца. Толкатели передают усилия от кулачков распределительного вала к штангам или непосредственно к клапанам и воспринимают возникающие при этом боковые усилия. Толкатели изготовляются в виде круглых стержней или стаканов, совершающих осевое возвратно-поступательное движение, а также в виде рычагов, совершающих качательные движения вокруг своей оси. Толкатели изготовляются из стали с низким и средним содержанием углерода и из чугуна. Цилиндрические толкатели выполняются пустотелыми с плоской или сферической поверхностью днища радиусом 700—1000 мм, а кулачок распределительного вала — коническим с углом при вершине конуса 6—12° При этом кулачок смещается относительно оси толкателя в сторону основания конуса на 2—3 мм, что обеспечивает проворачивание толкателя вокруг его оси, с целью предотвращения неравномерного износа его боковой направляющей поверхности при работе. В двигателях марки «ЯМЗ» (рис. 26, а) применяют подвесные рычажные толкатели, свободно установленные на разрезной оси. На одном конце рычага выполнено гладкое отверстие под ось качания на другом, в вилке на
Глава 3. Механизм газораспределения 39 Рис. 26. Детали и механизм газораспределения дизелей: а — ЯМЗ-236; б — КамАЗ-740; 7 — средняя ось толкателей; 2 — распорная втулка; 3 — крайняя ось толкателей; 4 — толкатель; 5 — промежуточная втулка; 6 — штанга; 7 — регулировочный винт; 8 — коромысло; 9 — контргайка; 10 — стопорное кольцо; 11 — упорная шайба; 12 — выпускной клапан; 13 — су- карь; 14— втулка; /5 — тарелка пружины; 16 — болт; 17— ось коромысла; 18— внешняя пружина; 19 — внутренняя пружина; 20 — шайба; 21 — впускной клапан; 22 — пробка; 23 — задняя втулка оси толкателей; 24 — распределительный вал; 25 — направляющая толкателей; 26 — головка блока цилиндра; 27 — седло клапана; 28 — направляющая втулка; 29 — наплавка на толкателе; Л — тепловой зазор игольчатых подшипниках, установлен ролик, сверху вилки запрессована стальная пята со сферической поверхностью, на которую опирается штанга. Штанга передает усилие от толкателя к коромыслу и должна обладать определенной продольной жесткостью. Штанги изготовляются трубчатыми или сплошными из стали или дюралюминия. На штанги из дюралюминиевых прутков напрессовывают стальные термообработанные наконечники. При использовании стальных трубок наконечники запрессовывают в трубках или получают путем высадки и завальцовывания торцов у трубки. Коромысло представляет собой разноплечий рычаг таврового или двутаврового сечения, что повышает его жесткость. Оно передает усилия от штанги к клапану. Коромысла отливают из чугуна или стали методом точного литья. В коротком плече коромысла имеется резьбовое отверстие под регулировочный винт и канал для подвода масла к сферической поверхности штанги и винта. На другом плече коромысла имеется сферическая поверхность (боек коромысла), которая опирается на стержень клапана. В средней части выполнено гладкое отверстие под ось качания коромысла. От осевого смещения коромысло удерживается упорной шайбой и стопорным пружинным кольцом.
40 Раздел L Двигатель 3.2. Клапанный механизм Клапанный механизм включает в себя следующие детали: клапаны, направляющие втулки, седла клапанов, возвратные пружины, опорные тарелки, сухари, механизм вращения клапана (двигатель ЗИЛ-508.10). Клапаны предназначены для герметизации цилиндра при тактах сжатия и рабочего хода и соединения его с трубопроводами впускной или выпускной системы при тактах впуска или выпуска в процессе газообмена. Условия работы клапанов: • большие динамические нагрузки; • высокие скорости перемещения; • неравномерный нагрев отдельных участков; • повышенная коррозионно-активная среда. Клапаны изготовляются из легированных сталей с высоким содержанием хрома и никеля. Клапан состоит из головки (или тарелки) и стержня. Различают клапаны с плоской, выпуклой и тюльпанообразной головками. Головки обычно имеют небольшой (около 2 мм) цилиндрический поясок и уплотнительную фаску, снятую под углом 45 и 30° Уплотнительные фаски клапанов шлифуют и притирают к седлам, а стержни подвергают термообработке, шлифовке, полировке и покрывают хромом. Торцы стержней (3—5 мм) закаливают. На концах стержней имеются цилиндрические, конусные или фасонные проточки для крепления клапанных пружин. Чтобы уменьшить напряженность выпускных клапанов, возникающую вследствие высоких температур, в ряде двигателей применяют натриевое охлаждение. С этой целью клапан выполняют полым с утолщенным стержнем и примерно на 2/3 полости заполняют металлическим натрием, температура плавления которого составляет около 97 К. В рабочем состоянии расплавленный натрий, перемещаясь внутри полости при возвратно-поступательном движении клапана, увеличивает интенсивность отвода теплоты от горячей головки к более холодному стержню и далее к направляющей втулке. Направляющие втулки обеспечивают строго перпендикулярное относительно седла перемещение клапанов. Материалом для изготовления направляющих втулок служат в основном перлитный чугун и металлокерамика, представляющая собой смесь из порошков железа, меди и графита, которые подвергаются прессованию, спеканию в печи и пропитыванию маслом. От возможного просачивания в цилиндры масла, стекающего по стержням впускных клапанов, последние снабжаются самоподжимными манжетами. Клапанные пружины обеспечивают плотное прилегание клапанов к седлам и своевременное их закрытие после завершения действия кулачков распределительного вала. Характеристику (жесткость) клапанных пружин подбирают из условий сохранения кинематической связи между деталями механизма газораспределения. Клапанные пружины изготовляются из стальной проволоки диаметром 4—6 мм, легированной марганцем и хромом. Пружины нижнеклапанных механизмов обычно имеют 8—10 витков, верхнеклапанных механизмов — 6—8 витков. Два крайних витка являются опорными. Их размещают вплотную к соседним виткам и прошлифовыва-
Глава J. Механизм газораспределения 41 ют, создавая сплошную кольцевую поверхность, перпендикулярную оси пружины. Нижним концом пружина опирается на головку блока цилиндров через специальную опорную тарелку, а верхним концом соединяется двумя сухарями с клапаном через верхнюю тарелку. Для этой цели сухари на внутренней поверхности имеют выступы, которые входят в проточку клапана, а гладкая наружная поверхность сухарей выполнена в виде усеченного конуса. Два сухаря установленные на клапан, образуют опорную коническую поверхность, которая сопрягается с опорной поверхностью проточки в верхней тарелке, и это соединение удерживается в замкнутом состоянии за счет предварительного сжатия пружины. Чтобы устранить возможность возникновения опасного для прочности пружин резонанса, на клапаны ставят по две пружины с навивкой витков в противоположные стороны или делают пружины с переменным шагом навивки. Седла клапанов. Наиболее важным сопряжением, определяющим долговечность механизма газораспределения, является сопряжение седло—клапан, так как оно подвержено ударным нагрузкам при посадке клапана и значительным термическим перегрузкам. Седло клапана, с которым соприкасается уплотнительная фаска клапана, обрабатывают инструментом с углами заточки 15, 45 и 75° таким образом, чтобы уплотнительный поясок седла имел угол 45° и ширину около 2 мм. По своим размерам поясок должен подходить ближе к меньшему основанию конусной фаски клапана. Фаска клапана имеет меньший угол и соприкасается с седлом только узким пояском у своего большого основания, что обеспечивает хорошее уплотнение клапанного отверстия. Вставные седла изготовляются в виде отдельных колец из специального чугуна, легированной стали или металлокерамики. Механизм вращения клапана. Для поддержания в рабочем состоянии контактных поверхностей уплотнительных фасок выпускных клапанов иногда применяют специальные устройства, позволяющие принудительно поворачивать клапаны в процессе работы. Механизм вращения клапана (двигатель ЗИЛ-508.10) (рис. 27) состоит из неподвижного корпуса, в наклонных канавках которого расположены пять шариков с возвратными пружинами, дисковой пружины и опорной шайбы с замочным кольцом. Механизм вращения клапана устанавливается в расточке, сделанной в головке блока цилиндров под опорной шайбой клапанной пружины. При закрытом клапане давление на дисковую пружину невелико, и она вогнута наружным краем вверх, а внутренним краем опирается в заплечик корпуса. Шарики отжаты пружинами в исходное положение. В момент открытия клапана усилие со стороны клапанной пружины возрастает, под действием чего дисковая пружина, выпрямляясь, передает усилие на шарики и вызывает их перемещение в углубление. Когда клапан закрывается, сила, действующая на дисковую пружину, уменьшается, и она, выгибаясь, освобождает шарики. Шарики под действием возвратных пружин перемещаются в исходное положение, что приводит к повороту клапана на некоторый угол (клапаны совершают 20—40 оборотов в минуту). В некоторых двигателях применяют менее эффективное, но более простое устройство, основанное на использовании способа крепления клапанной пружины на стержне клапана. Крепление пружины на клапане состоит из опорной тарелки, втулки и двух сухарей. Контакт между опорной тарел-
42 Раздел L Двигатель а) г) Рис. 27. Выпускной клапан двигателя автомобиля ЗИЛ-508.10 с механизмом вращения: а — выпускной клапан и механизм вращения; бч в, г — начальное, рабочее и конечное положения механизма вращения соответственно; 1 — выпускной клапан; 2 — корпус механизма вращения; 3 — шарик; 4 — опорная шайба; 5 — замковое кольцо; 6 — пружина клапана; 7 — тарелка пружины; 8 — сухарь; 9 — дисковая пружина; 10 — возвратная пружина; 11 — натриевый наполнитель; 12 — направляющая втулка; 13 — седло клапана; 14 — жаростойкая наплавка; 75 — заглушка; 16 — головка блока цилиндров кой и втулкой имеет место только на небольшой торцевой поверхности втулки, поэтому во время работы двигателя под действием вибрации узла клапан—пружина скручивание пружины при подъеме клапана обеспечивает его проворачивание. Тепловой зазор. В процессе работы двигателя клапаны и детали привода клапана нагреваются, длина их увеличивается. В результате между седлом и головкой клапана при тактах сжатия и расширения может образовываться зазор, что ведет к обгоранию фасок клапана и седла, их эрозионному изнашиванию и в конечном итоге к ухудшению герметичности цилиндра, а следовательно, и резкому снижению технико-экономических показателей двигателя. Для предотвращения этих явлений кинематическую цепь привода клапана при его закрытом состоянии размыкают, т. е. устанавливают зазор ме-
Глава 4. Система охлаждения 43 жду торцом клапана и деталью привода, воздействующей на клапан (коромыслом или толкателем). В среднем тепловые зазоры в зависимости от типа двигателя составляют 0,15—0,30 мм для впускного клапана и 0,15—0,35 мм для выпускного. 3.3. Фазы газораспределения Фазы газораспределения. Качество газообмена определяется параметрами открытия клапанов: продолжительностью открытия и проходным сечением клапанной щели, задаваемые профилем кулачка. Для увеличения наполнения цилиндров и улучшения их очистки от отработавших газов клапаны открываются в моменты, не совпадающие с ВМТ и НМТ, а с некоторым опережением в начале и запаздыванием в конце процесса впуска и выпуска. Продолжительность открытия впускных и выпускных клапанов (угол поворота коленчатого вала относительно ВМТ и НМТ) называется фазой газораспределения. Период, когда одновременно открыты впускной и выпускной клапаны, называется перекрытием клапанов. Фазы газораспределения для каждого значения частоты вращения коленчатого вала имеют свою оптимальную величину, которую подбирают в основном для режимов работы, характеризуемых максимальным крутящим моментом, максимальной мощностью, опытным путем в результате длительных доводочных испытаний. Глава 4 Система охлаждения Система охлаждения предназначена для поддержания оптимального теплового режима двигателя, чтобы он не перегревался и не переохлаждался. Требования к системе охлаждения: • автоматическое поддержание оптимального теплового режима в двигателе, независимого от режима работы и внешних условий; • быстрый прогрев двигателя до рабочей температуры; • длительное сохранение теплоты после остановки двигателя; • малые энергетические затраты, связанные с приводом агрегатов системы охлаждения. Сгорание топливовоздушной смеси сопровождается выделением значительного количества теплоты. Если двигатель не охлаждать или охлаждать недостаточно, то его детали могут нагреться до высокой температуры, а это уменьшает их прочность и наполнение цилиндров, ухудшает условия работы смазочной системы вследствие снижения вязкости перегретого масла, ускоряет срабатывание присадок к маслам и увеличивает количество отложений и нагара на деталях.
44 Раздел L Двигатель Переохлаждение двигателя сопровождается ростом механических потерь из-за повышения вязкости масла, ухудшением процессов смесеобразования и сгорания, следствием чего является повышенный расход топлива. Конденсация паров воды в картерной полости холодного двигателя и на стенках цилиндров интенсифицирует коррозионный износ. В отработавших газах повышается содержание углеводородов несгоревшего топлива и высокотоксичных альдегидных соединений. Принудительный отвод теплоты от деталей двигателя осуществляется с помощью жидкости или воздуха, в связи с чем различают двигатели жидкостного и воздушного охлаждения. 4.1. Жидкостная система охлаждения Большинство автомобильных двигателей имеют жидкостные системы охлаждения закрытого типа (рис. 28, 29). Жидкостная система охлаждения более инерционна. Двигатель медленно прогревается, но и медленно остывает. Кроме того, большая теплоемкость охлаждающей жидкости обеспечи- 5 6 7 в Рис. 28. Система охлаждения двигателя автомобиля ЗИЛ -508.10: / — радиатор; 2 — жалюзи; 3 — вентилятор; 4 — жидкостной насос; 5 и 27 — верхний и нижний бачки радиатора соответственно; 6~ пробка радиатора; 7— отводящий шланг; 8— компрессор; 9— подводящий шланг; 10 — перепускной шланг; 11 — термостат; 12 — патрубок; 13 — фланец для установки карбюратора; 14 ~ впускной трубопровод; 15 — кран отопителя; 16 и 77— подводящая и отводящая трубки соответственно; 18 — радиатор отопителя; 19 — датчик указателя гемпературы жидкости; 20 — дозирующая вставка; 21 — водяная рубашка головки блока цилиндров; 22 — водяная рубашка блока цилиндров; 23 — сливной кран рубашки блока цилиндров; 24 — рукоятка привода сливного крана; 25 — сливной кран патрубка радиатора; 26 ~ подводящий патрубок
Глава 4. Система охлаждения 45 Рис. 29. Система охлаждения дизеля КамАЗ-740: 1 — шкив коленчатого вала; 2 — нижний бачок; 3 — жалюзи; 4 — радиатор; 5 — гидромуфта привода вентилятора; 6 — перепускной патрубок; 7 — нагнетательный патрубок; 8 — верхний бачок; 9 — верхний патрубок; 10 — термостат; 11 — водораспределительная коробка; 12 — соединительная труба; 13 — подводящая трубка; 14 ~ правая труба; 15 — отводящая трубка; 16 -~ впускной коллектор; 17 — датчик контрольной лампы перегрева жидкости; 18 — расширительный бачок; 19 — горловина с пробкой; 20 — пробка с клапанами; 21 — отводящая трубка от компрессора; 22 — отводящая трубка левой трубы; 23 — компрессор; 24 — левая труба; 25 — крышка головки; 26 — головка блока цилиндров; 27 — жидкостной насос; 28 — сливной кран (пробка); 29 — шкив жидкостного насоса; 30 — вентилятор; 31 — нижний патрубок вает интенсивный и равномерный теплоотвод и меньшую температуру деталей. Теплота, отводимая от двигателей, используется для подогрева впускного трубопровода и улучшения смесеобразования, а также для отопления кабины или салона автомобиля в холодную погоду. Система охлаждения двигателя состоит из радиатора, вентилятора, жидкостного насоса, рубашки охлаждения блока цилиндров, рубашки охлаждения головки блока цилиндров, термостата, патрубков, шлангов, расширительного бачка, приборов контроля температуры жидкости, сливных краников. Циркуляцию жидкости в системе охлаждения осуществляют по двум кругам: малому и большому. По малому кругу жидкость циркулирует при пуске холодного двигателя, обеспечивая его быстрый прогрев в такой последовательности: жидкостной насос — распределительные трубы — рубашка охлаждения блока цилиндров — рубашка охлаждения головки блока цилиндров — верхний пат-
46 Раздел L Двигатель рубок термостата (клапан закрыт) — перепускной шланг приемная полость жидкостного насоса. По большому кругу жидкость циркулирует при прогретом двигателе: жидкостной насос (как и по малому кругу) — термостат (клапан открыт) — резиновый шланг — патрубок радиатора — верхний бачок радиатора — сердцевина радиатора — нижний бачок радиатора — патрубок — шланги — приемная полость жидкостного насоса. 4.2. Приборы жидкостной системы охлаждения Радиатор (рис. 30) является теплообменником системы охлаждения, где поступающая из двигателя жидкость передает теплоту потоку воздуха. Радиатор состоит из верхнего и нижнего бачков, соединенных между собой трубками, образующими его охлаждающую решетку (сердцевину радиатора). Верхний бачок радиатора имеет наливную горловину с пробкой, а нижний — сливной кран. В наливную горловину впаяна пароотводная трубка, соединенная с расширительным бачком. Пароотводная трубка заглублена в радиатор, где отводимые пары конденсируются. К верхнему и нижнему бачкам припаяны боковые стойки. Стойки и пластина образуют каркас радиатора. Сердцевина радиатора состоит из нескольких рядов трубок, впаянных в верхний и нижний бачки. К трубкам крепятся тонкие охлаждающие пластины или гофрированные ленты, изготовленные из латуни, алюминия или красной меди. Пробка наливной горловины в закрытых системах жидкостного охлаждения имеет два предохранительных клапана с уплотнительными резиновыми прокладками и пружинами. Паровой клапан регулируют на избыточное давление (0,145—0,160 МПа), воздушный клапан открывается при падении давления в системе против атмосферного не более чем на 0,01 МПа. При нормальном функционировании клапанов система охлаждения только кратковременно может сообщаться с окружающей средой или полостью расширительного бачка. Жалюзи устанавливаются перед радиатором, с их помощью регулируется количество воздуха, проходящего через сердцевину радиатора. Жалюзи изготовляются в виде набора вертикальных или горизонтальных пластин — створок из оцинкованного железа, которые объединены общей рамкой и снабжены шарнирным устройством, обеспечивающим одновременный или групповой поворот их вокруг своей оси. Жалюзи прикрепляют к каркасу радиатора или к его наружной облицовке. Управление створками осуществляется вручную или с помощью устройства с термостатом. Жидкостной насос создает в системе охлаждения принудительную циркуляцию жидкости. Применяют одноступенчатые жидкостные насосы центробежного типа. Привод насоса, как правило, работает от шкива коленчатого вала посредством клиноременной передачи. Жидкостной насос состоит из корпуса, вала привода с крыльчаткой, ступицы для крепления шкива привода, самоподжимной уплотняющей
Глава 4. Система охлаждения 47 28 27 26 25 24 6) в) Рис. 30. Радиатор {а) и его работа при открытом выпускном (б) и открытом впускном (в) клапанах: 1 — каркас; 2 — жалюзи; 3 — тяга; 4 — рукоятка привода жалюзи; 5 — фиксатор; 6 — стойка; 7 — пробка радиатора; 8 — горловина радиатора; 9 — верхний бачок; 10 и 13— гибкие шланки; 11 — отводящий патрубок; 12 — сердцевина радиатора; 14 — сливной кран радиатора; 15 — нижний бачок; 16 — направляющий кожух; 17 — пароотводная трубка; 18 — корпус пробки; 19 — пружина парового клапана; 20 — стойка; 21 — запирающаяся пружина; 22 — паровой (выпускной) клапан; 23 — прокладка выпускного клапана; 24 — прокладка воздушного клапана; 25 — воздушный клапан; 26 — пружина воздушного клапана; 27 — седло воздушного клапана; 28 — отверстие для поступления воздуха манжеты, двух латунных обойм, резиновой манжеты, уплотняющей шайбы и пружинного кольца. Вал насоса вращается в двух шарикоподшипниках. Центробежные насосы одноступенчатого типа, рассчитанные на давление в 0,04 —0,1 МПа, отличаются компактностью и обеспечивают достаточную подачу жидкости при сравнительно больших зазорах между крыльчаткой и стенками корпуса. Вентилятор служит для создания воздушного потока, проходящего через сердцевину радиатора, для охлаждения жидкости, протекающей по трубкам.
48 Раздел I. Двигатель Вентилятор состоит из ступицы со шкивом, к которой крепятся лопасти. Лопасти вентиляторов изготовляются из листовой стали или из пластмассы. Привод вентилятора имеет автоматическое включение и выключение и осуществляется посредством: • зубчатых колес; • клиноременной передачи; • электромагнитной муфты; • гидродинамической муфты (рис. 31); • автономного электрического привода; • вязкостной муфты; • фрикционной муфты. Вентилятор устанавливают непосредственно за радиатором. Для повышения эффективности работы вентилятора его иногда размещают в направляющем кожухе, закрепленном на радиаторе. На привод вентилятора затрачивается 3—5 % мощности двигателя. Вентилятор повышает уровень шума двигателя. Поэтому стремятся обеспечить эффективную работу системы охлаждения с минимальными энергетическими затратами. 12 11 10 9 а) б) Рис. 31. Гидромуфта привода вентилятора дизеля КамАЗ-740 (а) и включатель гидромуфты с термосиловым датчиком (б): 1 — передняя крышка; 2 — корпус; 3 — кожух; 4, 7, 12, 13 и 20 — шарикоподшипники; 5 — трубка подвода масла; 6 — ведущий вал; 8 — уплотнительное кольцо; 9 — ведомое зубчатое колесо; 10 — ведущее зубчатое колесо; И — шкив; 14 — упорная втулка; 15 — ступица вентилятора; 16 — ведомый вал; 77и 21 — самоподвижные уплотнитель- ные муфты; 18 — прокладка; 19 и 22 — болты; 23 — корпус включателя; 24 — рычаг пробки крана; 25 — термосиловой датчик
Глава 4. Система охлаждения 49 Термостат (рис. 32) автоматически поддерживает необходимую температуру жидкости в системе охлаждения и позволяет быстро прогреть холодный двигатель при пуске. б) Рис. 32. Работа термостатов: а — жидкостного (дизель ЯМЗ-236); б — с твердым наполнителем (двигатель автомобиля ЗИЛ-508.10); / — корпус жидкостного насоса; 2— гофрированный баллон; 3 — шток; 4 — прокладка; 5 — клапан термостата; 6 — патрубок для отвода горячей жидкости; 7 — корпус термостата; 8 — кронштейн; 9 — баллон термостата; J0 — твердый наполнитель; 11 — резиновая мембрана; 12 — направляющая втулка; 13 — возвратная пружина; 14 — коромысло клапана; 75 — буфер; 16 — впускной трубопровод
50 Раздел L Двигатель Термостаты бывают жидкостные (сильфонные) и с твердым наполнителем, а также одноклапанные, которые ограничивают только поток жидкости, и двухклапанные, распределяющими поток жидкости между радиатором и малым кругом циркуляции жидкости. Устанавливают термостат либо на пути движения жидкости к радиатору (верхний патрубок), либо перед насосом. Жидкостной термостат состоит из корпуса с окнами, гофрированного баллона, заполненного легко испаряющейся жидкостью — смесью 2/з Дис~ тиллированной воды и У3 этилового спирта и клапана. Нижняя часть баллона жестко соединена с кронштейном корпуса. К верхней части баллона припаян шток с клапаном. Шток может перемещаться в направляющей корпуса. Если жидкость в системе охлаждения не прогрета, то давление в сильфоне понижено и жидкость находится в сжатом состоянии (клапан закрыт). По мере прогрева системы охлаждения жидкость в сильфоне испаряется, давление повышается, сильфон расширяется, открывается клапан. С этого момента жидкость начинает циркулировать через радиатор. Клапан начинает открываться при температуре жидкости 70—80 °С и полностью открывается при температуре 85—95 °С. Термостаты жидкостного типа вследствие образования микроскопических трещин в стенках сильфона и потери герметичности имеют ограниченный срок службы. В настоящее время применяют термостаты с твердым наполнителем. Они состоят из капсулы, заполненной активной массой (кристаллическим воском с медными опилками и церезином). Капсула закрыта резиновым буфером-мембраной, соединенным со штоком. Шток упирается в регулировочный винт, расположенный в верхней рамке термостата, кольцо которой образует седло для основного клапана. Клапан и вместе с ним капсула поджимаются пружиной, которая вторым своим концом упирается в нижнюю рамку. При расширении активной массы шток, упирающийся в регулировочный винт, отжимает всю капсулу вместе с основным клапаном и открывает проход жидкости к радиатору. 4.3. Предпусковой подогреватель Предпусковой подогреватель (рис. 33) служит для предварительного прогрева двигателя перед пуском при низких температурах окружающей среды и способствует уменьшению износа цилиндров и поршней. В комплект пускового подогревателя входят котел, заполненный охлаждающей жидкостью, топливный бачок, электромагнитный клапан, вентилятор с электродвигателем, свеча накаливания, пульт управления. Перед пуском двигателя открывается электромагнитный клапан, и топливо поступает в камеру сгорания котла, где первоначально воспламеняется свечой. Воздух подается в котел от вентилятора. Горячие газы, проходя через газопроводы котла, нагревают жидкость, а при выходе из котла патрубком направляются на поддон картера, нагревая в нем масло. Охлаждаю-
Глава 4, Система охлаждения 51 Рис. 33. Предпусковой подогреватель двигателя автомобиля ЗИЛ-508.10: / — топливный бачок; 2 — пробка бачка; 3 — воронка; 4 — кран; 5 — электродвигатель с вентилятором; 6 — сливной кран трубопровода подогревателя; 7 — ручка управления краном; 8 — электромагнитный клапан; 9 — регулировочная игла; 10 — спираль подогрева электромагнитного клапана; 11 — трубка от электромагнитного клапана; 12 — шланг подвода воздуха; 13 — свеча накаливания; 14 — отводящая трубка от двигателя к котлу; 15 — лоток; 16 — сливной кран лотка; 17 — котел подогревателя; 18 — подводящая трубка от котла к двигателю; 19 — штуцер; 20 — провод; 21 — пульт управления; 22 — контрольная спираль; 23 — ручка переключателя; 24 — выключатель свечи накаливания; 25 — топливопровод щая жидкость нагревается в котле и вследствие конвекции поступает в рубашку охлаждения блока цилиндров. 4.4. Воздушная система охлаждения Система воздушного охлаждения двигателей состоит из ряда элементов, регулирующих ее работу и поддерживающих заданный тепловой режим двигателя. Принципиальная система воздушного охлаждения включает в себя: • подкапотное пространство, закрытое кузовными панелями; • аксиальный или центробежный вентилятор с направляющим аппаратом, приводимый в действие коленчатым валом двигателя; • направляющие панели «рубашки» охлаждения;
52 Раздел L Двигатель • органы, управляющие расходом воздуха в виде заслонок, управляемых термостатами, дросселирующих вход и выход воздуха, или автоматической муфты регулирования частоты вращения лопастей вентилятора; • датчик температуры и показывающий прибор в кабине водителя; • оребрение цилиндров и их головки. По сравнению с жидкостной системой охлаждения воздушная имеет ряд преимуществ: • простота и удобство в эксплуатации; • отсутствие дорогостоящих узлов и агрегатов; • меньшая масса двигателя; • более быстрый прогрев двигателя; • пониженная чувствительность к колебаниям температуры, что особенно важно при эксплуатации автомобиля в районах с жарким или холодным климатом. К недостаткам воздушной системы охлаждения следует отнести: • повышенный уровень шума, создаваемый вентилятором; • большую напряженность отдельных деталей двигателя вследствие их неравномерного охлаждения; • большой расход мощности на привод вентилятора (10 —15 % мощности двигателя). Глава 5 Смазочная система Смазочная система служит для подвода масла к трущимся поверхностям деталей двигателя, частичного отвода теплоты и продуктов изнашивания. Масло, поступающее к трущимся поверхностям, уменьшает потери на трение и износ деталей, охлаждает трущиеся поверхности и очишает их от продуктов изнашивания. Автомобильные двигатели (рис. 34—37) имеют комбинированную смазочную систему, в которой масло к трущимся поверхностям одних деталей подается под давлением от насоса, а к другим — путем разбрызгивания и самотеком. Под давлением смазываются наиболее нагруженные детали: коренные и шатунные шейки коленчатого вала, коренные шейки распределительного вала, подшипники коромысел, поршневые пальцы. Разбрызгиванием смазываются такие детали, как клапанный механизм, зубчатые колеса газораспределения, «зеркало» цилиндров. Самотеком смазываются штанги, толкатели, кулачки распределительного вала и др. Смазочная система включает в себя масляный насос, резервуар для масла (поддон картера), маслоприемник с сетчатым фильтром первичной
Глава 5. Смазочная система 53 Рис. 34. Элементы смазочной системы двигателя автомобиля «Волга»: / и 18 — пробки масло- сливных отверстий; 2 — маслоприемник; 3 — масляный насос; 4 — редукционный клапан; 5 — коленчатый вал; б — масляная магистраль; 7 — распределительный вал; 8 — масляный радиатор; 9 — крышка маслозаливной горловины; 10 — коромысло; 11 — крышка головки блока цилиндров; 12 — головка блока цилиндров; 13 — клапан; 14 — штанга; 15 — толкатель; 16 — датчик указателя давления масла; 17 — полнопоточный масляный фильтр; 19— датчик лампы аварийного снижения давления масла; 20 — ограничительный клапан; 21 — кран масляного радиатора; 22 — поддон; 23 — отверстие в шатуне; 24 и 25 — каналы соответственно в головке и блоке цилиндров; 26 — указатель уровня масла; 27 — винтовая канавка; 28 и 32 — каналы для стока масла; 29 — пробка; 30 — канал в коленчатом валу; 31 — грязеуловительная полость; 33 — трубка для смазывания зубчатых колес; 34 — канавки на шейке распределительного вала; 35 — зубчатое колесо распределительного вала; 36 — зубчатое колесо коленчатого вала
54 Раздел L Двигатель Рис. 35. Смазочная система двигателя автомобиля ЗМЗ-53.11: / — масляный радиатор; 2 — кран масляного радиатора; 3 — предохранительный клапан; 4 — ось коромысел; 5 — стойка оси коромысел; 6 — канал в головке блока цилиндров; 7 — канал в блоке цилиндров; 8 — центрифуга; 9 — штанга; 10— толкатель; // — главная масляная магистраль; 12— отверстие в корпусе распределителя; 13 — полость; 14 — маслопровод к центрифуге; 15 и 16 — верхняя и нижняя секции соответственно масляного насоса; 17 и 18 — маслоприемник; 19 — поддон; 20 — маслопровод для слива масла из радиатора; 21 — редукционные клапаны; 22 — вторая шейка распределительного вала; 23 — четвертая шейка распределительного вала очистки масла, масляные фильтры, масляные каналы и маслопроводы, масляный радиатор, редукционный и перепускные клапаны, маслозалив- ную горловину с крышкой, приборы контроля уровня и давления масла, приборы вентиляции картера. При работе двигателя масло засасывается из поддона картера насосом через маслоприемник и подается в фильтр. Фильтр, через который проходит все масло, поступающее в главную магистраль, называется последовательно включенным или полнопоточным. Если проходит только часть масла (10—15 %), фильтр называется неполнопоточным. Из фильтра масло поступает в масляную магистраль, выполненную в виде продольного канала в картере двигателя. Максимальное давление масла, создаваемое насосом, ограничивается редукционным клапаном. Из главной магистрали масло под давлением по каналам поступает к коренным подшипникам коленчатого вала, подшипникам распределительного
Глава 5. Смазочная система 55 Рис. 36. Смазочная система двигателя автомобиля ЗИЛ-508.10: о — общий вид; б — подача масла в ось коромысла; в — смазывание регулировочного винта и верхнего наконечника штанги; г — смазывание стенок цилиндра; 1 — трубопровод подачи масла в масляный радиатор; 2 — кран включения масляного радиатора; 3 — масляный насос; 4 — маслопровод от насоса к центрифуге; 5 — маслораспределительная камера; 6 — указатель давления масла (манометр); 7 — контрольная лампа аварийного снижения давления масла; 8 — полнопоточная центрифуга; 9 — воздушный фильтр; 10 — кривошипно-шатунная группа компрессора (смазывание разбрызгиванием); 11 — левый магистральный канал; 12 — трубопровод подачи масла для смазывания компрессора; 13 — трубка для слива масла из компрессора; 14 — масляный радиатор; 15 — трубопровод для слива масла из радиатора; 16 — зубчатое колесо распределительного вала; 17 — зубчатое колесо коленчатого вала; 18 — канал, соединяющий коренную шейку с шатунной; 19 — грязеуловительная полость; 20 — поддон; 21 — правый магистральный канал; 22 — маслоприемник; 23 — канал в стойке оси; 24 — полая ось коромысла; 25 — отверстие в шатуне для подачи масла на стенку цилиндра вала и в полую ось коромысел. От коренных подшипников по каналам в шейках и щеках масло поступает к шатунным подшипникам коленчатого вала. В двигателях марки «ЯМЗ» по каналу в шатуне масло подается под давлением для смазывания поршневого пальца. Вытекающее через зазоры в подшипниках коромысел масло разбрызгивается движущимися деталями, стекая по штангам, смазывает их наконечники, толкатели и кулачки распределительного вала. В картере масло в виде тумана оседает на стенки цилиндров. У некоторых двигателей в нижней головке шатуна имеется отверстие, через которое при его совпадении с каналом в шатунной шейке масло выбрасывается в наиболее нагруженную часть стенки цилиндра.
56 Раздел L Двигатель Рис. 37. Смазочная система двигателя автомобиля КамАЗ-5320: / — масляный радиатор; 2, 3, 18, 19, 21, 23 и 24 — маслопроводы: 4 — сливной клапан центрифуги; 5 — перепускной клапан центрифуги; 6 — кран включения масляного радиатора; 7— центрифуга; 8 — предохранительный клапан нагнетающей секции; 9 — радиаторная секция масляного насоса; 10 — нагнетающая секция масляного насоса; 11 — клапан смазочной системы; 12 — полнопоточный фильтр тонкой очистки масла; 13 — главная масляная магистраль; 14 — перепускной клапан фильтра тонкой очистки масла; 15 — манометр; 16 — указатель уровня масла; 17 — сапун; 20 — компрессор; 22 — топливный насос высокого давления; 25 — кран включения гидромуфты; 26 — термосиловой датчик; 27— гидромуфта привода вентилятора; 28 — поддон; 29 — предохранительный клапан радиаторной секпии Давление масла контролируется электрическим манометром, датчик которого установлен в главной масляной магистрали, а указатель — на щитке приборов. Давление масла в карбюраторных двигателях 0,05—0,4 МПа, в дизелях 0,1—0,6 МПа. Для охлаждения масла некоторые двигатели снабжены радиатором. Охлажденное масло сливается в поддон картера.
Глава 5. Смазочная система 57 5.1. Приборы смазочной системы Масляный насос (рис. 38) предназначен для подачи масла под давлением к наиболее нагруженным поверхностям деталей и к приборам его очистки и охлаждения. Применяют насосы шестеренчатого типа с приводом, как пра- Рис. 38. Масляный насос с маслоприемником: а — конструкция; б — схема работы; в — схема поступления масла при чистой сетке; г — схема поступления масла в случае засорения сетки; 1 — корпус нижней секции насоса; 2 — болт, соединяющий корпуса секций насоса; 3 — прокладки; 4 — ведомое зубчатое колесо верхней секции; 5 — вал насоса; 6 — корпус верхней секции; 7 — ведущее зубчатое колесо верхней секции; 8 — стопорное кольцо; 9 — крышка масляного насоса; 10 — штифт; 11 — ведущее зубчатое колесо нижней секции; 12 — ведомое зубчатое колесо нижней секции; 13 и 15 — редукционные клапаны; 14 — место установки крана включения масляного радиатора; 16 — верхняя секция; 17 — нижняя секция; 18 — корпус маслоприемника; 19 — трубка; 20 — пружина; 21 — сетка
58 Раздел L Двигатель вило, от распределительного вала. Различают односекционные и двухсекционные насосы. Вторая секция подает масло в радиатор для охлаждения. Масляный насос состоит из корпуса, в котором размещены зубчатые колеса (зазор между торцами зубьев зубчатых колес и стенками корпуса делается минимальным); вала привода, на котором крепится посредством шпонки ведущее зубчатое колесо; крышки; редукционного клапана; пробки. Ведомое зубчатое колесо свободно вращается на оси. Масло транспортируется во впадинах между зубьями зубчатых колес и выдавливается в нагнетательный канал по мере того, как зубья входят в зацепление. Редукционный клапан предохраняет систему маслоподачи от чрезмерных давлений, возникающих при пуске холодного двигателя, когда вязкость масла велика. Редукционный клапан находится в канале, соединяющем полости нагнетания и всасывания. Канал перекрывается шариком или поршнем, поджимаемым пружиной. С помощью пробки регулируют сжатие пружины, а следовательно, и давление в масляной магистрали. При повышении давления поршень отходит от седла, и масло проходит из полости нагнетания в полость всасывания. Маслоприемники служат для забора масла из поддона картера и, как правило, являются первичным фильтром его очистки. Фильтрующая сетка удерживается в корпусе пружиной. На корпусе имеются ребра, в которые кромкой упирается сетка, образуя щели между нею и корпусом. При засорении фильтрующая сетка прогибается, и масло поступает в насос через щели. Крепление фильтрующей сетки может быть и другим. Масляные фильтры (рис. 39) служат для очистки масла от механических примесей (продуктов изнашивания трущихся деталей, нагара и т. п.). Масляные фильтры в зависимости от принципа действия разделяют на щелевые и центробежные. В щелевых фильтрах размеры задерживающихся частиц определяются величиной отверстий (щелей), через которые проходит масло. В центробежных фильтрах твердые частицы удаляются из масла под действием центробежных сил. В зависимости от размеров задерживаемых частиц фильтры делятся на фильтры грубой (частицы до 40 мкм) и тонкой (частицы до 1—2 мкм) очистки. Фильтры тонкой очистки имеют большое сопротивление и включаются параллельно. Через них проходит около 10 % масла. В настоящее время широко используются полнопоточные фильтры тонкой очистки с большой фильтрующей поверхностью. Такие фильтры иногда снабжают секцией грубой очистки. Фильтры тонкой очистки, включенные в магистраль последовательно, обязательно имеют перепускной клапан. Щелевой фильтр состоит из корпуса, сливной трубки, картонного фильтрующего элемента, пружины и крышки, которая болтом крепится к корпусу. Масло, нагнетаемое насосом, по маслопроводу подводится к фильтру, просачивается через микропоры картонного фильтрующего элемента, проходит через отверстия внутрь сливной трубки и по каналу поступает в блок цилиндров.
Глава 5. Смазочная система 59 Рис. 39. Масляные фильтры: а — полнопоточный; б — центрифуга; 1 — пробка сливного отверстия; 2 — сливная трубка; 3 — корпус фильтра; 4 — датчик указателя давления масла; 5 — пружина перепускного клапана; 6 — перепускной клапан; 7 — пружина; 8 — болт сливной трубки; 9 — уплотнение фильтрующего элемента; 10 — крышка; 11 ~ маслопровод; 12 — фильтрующий элемент; 13 — датчик аварийного снижения давления масла; 14 — при- валочная плоскость корпуса; 75 — гайка-барашек; 16 — кожух; 17 — сетчатый фильтр; 18 — ось ротора; 19 — колпак ротора; 20 и 21 — прокладки; 22 — корпус ротора; 23 — корпус центрифуги; 24 — жиклер; 25 — упорный шарикоподшипник; 26 — стальной отражатель; Р — сила реакции Центробежные масляные фильтры (центрифуги) с реактивным приводом, как правило, являются фильтрами тонкой очистки. Они включаются в смазочную систему последовательно и состоят из корпуса, неподвижной полой оси, на которой расположен вращающийся ротор с колпаком, колпака фильтра. В двух приливах днища ротора ввернуты противоположно направленные жиклеры. Масло под давлением подводится к фильтру через полую ось, и полость ротора заполняется. Затем масло попадает в трубки и вытекает с большой скоростью через жиклеры в полость корпуса и сливается в поддон картера. Создаваемая вытекающим из жиклеров маслом реактивная тангенциально направленная сила заставляет ротор вместе с колпаком вращаться с частотой вращения 6000—8000 мин-1 При вращении вместе с колпаком масла тяжелые механические частицы отбрасываются центробежными силами к внутренней стенке колпака ротора, образуя на ней плотный осадок, а из жиклеров вытекает очищенное масло. Если центрифуга применяется в качестве полнопоточного фильтра тонкой очистки, то часть масла (10—20 %) используется на реактивный привод, а остальное под давлением поступает в главную масляную магистраль. В современных центрифугах используется не только реактивный привод, но и принцип гидравлической турбины. В этом случае масло, поступающее в ротор центрифуги, под давлением направляется на лопатки установленной в нем турбины и раскручивает их. Поэтому исключается потеря
60 Раздел L Двигатель Кран открыт Рис. 40. Масляный радиатор: / и 4 — шланги; 2 — масляный радиатор; 3 — бачок; 5 — кран; 6 — штуцер с предохранительным (ограничительным) клапаном масла на реактивный привод, и все количество масла, поданное насосом и прошедшее очистку, поступает к трущимся поверхностям деталей. Масляный радиатор. Необходимую температуру масла (80—110 °С) поддерживают с помощью двух систем — охлаждения и смазочной, работа которых тесно связана между собой. Масляные радиаторы (рис. 40) по конструкции аналогичны трубча- то-пластинчатым радиаторам системы охлаждения или выполнены из ореб- ренных трубок. Через радиатор масло прокачивается либо самостоятельным масляным насосом (секцией), либо отбирается из главной магистрали, питаемой основным насосом через жиклер. Секцию насоса, подающего масло в радиатор, снабжают перепускным клапаном, отрегулированным на избыточное давление (0,12 МПа). Если радиатор питается от общего насоса, то в смазочную систему вводят предохранительный клапан, который отключает радиатор при понижении давления в системе до 0,1 МПа. 5.2. Вентиляция картера В процессе работы двигателя в его картер прорываются газы, состоящие из горючей смеси и продуктов полного и частичного сгорания смеси. Количество картерных газов увеличивается по мере износа поршней,
Глава 5. Смазочная система 61 Из окружающей J _£> среды Рис. 41. Системы вентиляции картеров двигателей автомобилей: а ЗИЛ-508.10; б ГАЗ-24 «Волга»; 1 — воздушный фильтр вентиляции картера; 2 — воздухоподводящий канал; 3 — клапан вентиляции; 4 — стакан пружины; 5 — пружина; 6 — шарик клапана; 7 — штуцер; 8 и 13 — маслоуловители; 9 — трубка вентиляции картера; 10 — впускной клапан; // — воздушный фильтр; 12 — шланг большого диаметра; 14 шланг малого диаметра; 15 — сетчатый фильтрующий элемент; 16 — впускной трубопровод; 17 — карбюратор; 18 — щелевое отверстие
62 Раздел I. Двигатель поршневых колец и цилиндров. В газах содержатся загрязняющие масло- сернистые соединения и пары воды, что ухудшает качество масла, оказывает коррозирующее действие на подшипники. Весьма нежелательно проникновение картерных газов в кузов или кабину автомобиля, так как эти газы токсичны. Вентиляция картера двигателя (рис. 41) позволяет уменьшить вредное влияние картерных газов. Вентиляция картера может быть выполнена с отводом газов наружу — открытая система или в систему питания двигателя — закрытая система, для дожигания их в цилиндрах. При открытой системе вентиляции картера двигателя устанавливается эжекци- онная трубка, конец которой имеет косой срез (направлен противоположно движению автомобиля). При закрытой системе вентиляции пространство картера соединяется с впускным трубопроводом. Газы отводятся через маслоуловитель и перепускной клапан во впускной трубопровод. Свежий воздух поступает в картер через фильтр маслозаливной горловины. Во время работы двигателя на режиме холостого хода разрежение во впускном трубопроводе сильно возрастает, что приводит к нарушению состава горючей смеси и неустойчивой работе двигателя. Для предотвращения этого устанавливается перепускной клапан. Глава 6 Система питания карбюраторного двигателя Система питания карбюраторного двигателя служит для приготовления горючей смеси из паров топлива и воздуха в определенных пропорциях, подачи ее в цилиндры двигателя и отвода из них отработавших газов. В систему питания карбюраторного двигателя (рис. 42) входят: топливный бак, фильтр-отстойник, топливопроводы, топливный насос, фильтр тонкой очистки топлива, карбюратор, воздухоочиститель, впускной трубопровод, выпускной трубопровод, приемные трубы, глушитель, приборы контроля уровня топлива. При работе двигателя топливный насос засасывает топливо из топливного бака и через фильтры подает в поплавковую камеру карбюратора. При такте впуска в цилиндре двигателя создается разрежение и воздух, пройдя через воздухоочиститель, поступает в карбюратор, где смешивается с парами топлива и в виде горючей смеси подается в цилиндр, и там, смешиваясь с остатками отработавших газов, образуется рабочая смесь. После совершения рабочего хода, отработавшие газы выталкиваются поршнем в выпускной трубопровод и по приемным трубам через глушитель в окружающую среду. Топливо. В качестве топлива в карбюраторных двигателях обычно используют бензин, который получают в результате переработки нефти. Требования, предъявляемые к бензинам: • быстрое образование топливовоздушной смеси; • скорость сгорания не более 40 м/с;
Рис. 42. Системы питания и выпуска отработавших газов двигателя автомобиля ЗИЛ-508.10: 1 — канал подвода воздуха к воздушному фильтру; 2 — воздушный фильтр; 3 — карбюратор; 4 — рукоятка ручного управления воздушной заслонкой; 5 — рукоятка ручного управления дроссельными заслонками; 6 — педаль управления дроссельными заслонками; 7 — топливопроводы; 8 — фильтр-отстойник; 9 — глушитель; 10 — приемные трубы; 11 — выпускной трубопровод; 12 — фильтр тонкой очистки топлива; 13 — топливный насос; 14 — указатель уровня топлива; 15 — датчик указателя уровня топлива; 16 — топливный бак; 17— крышка горловины топливного бака; 18 — кран; 19 — выпускная труба глушителя
64 Раздел L Двигатель • минимальное коррозирующее воздействие на детали двигателя; • минимальное отложение смолистых веществ в элементах системы питания; • минимальное вредное воздействие на организм человека и окружающую среду; • способность длительное время сохранять свои свойства. Автомобильные бензины в зависимости от количества легкоиспаряю- щихся фракций подразделяют на летние и зимние. Для автомобильных карбюраторных двигателей выпускают бензины А-76, АИ-92, АИ-98 и др. Буква «А» обозначает, что бензин автомобильный, цифра — наименьшее октановое число, характеризующее детонационную стойкость бензина. Наибольшей детонационной стойкостью обладает изооктан, (его стойкость принимают за 100), наименьшей — н-гептан (его стойкость равна 0). Октановое число, характеризующее детонационную стойкость бензина, — процентное содержание изооктана в такой смеси с н-гептаном, которая по детонационной стойкости равноценна испытуемому топливу. Например, исследуемое топливо детонирует так же, как смесь 76 % изооктана и 24 % н-гептана. Октановое число данного топлива равно 76. Октановое число определяется двумя методами: моторным и исследовательским. При определении октанового числа вторым методом в маркировке бензина добавляется буква «И». Октановое число определяет допустимую степень сжатия. 6.1. Горючая смесь Горючая смесь, поступающая в цилиндры, приготовляется в смесительной камере карбюратора и представляет собой смесь паров мелко распыленного бензина и воздуха. Процесс смесеобразования продолжается во впускном трубопроводе и цилиндрах двигателя, где горючая смесь, смешиваясь с остатками отработавших газов, образует рабочую смесь. Для приготовления горючей смеси используют тщательно очищенные от механических примесей топливо и воздух. Горючая смесь должна сгорать полностью в тысячи доли секунды. Состав горючей смеси характеризуется определенным соотношением топлива и воздуха (по массе). Для полного сгорания t кг бензина теоретически необходимо 14,9 кг воздуха. Практически, количество воздуха, в зависимости от режима работы двигателя, может быть больше или меньше теоретического. Поэтому состав горючей смеси принято характеризовать коэффициентом избытка воздуха (а), который представляет собой отношение действительного количества воздуха (L), участвующего в процессе сгорания бензина, к стехиометрическому (LQ), т. е. к количеству воздуха, которое теоретически необходимо для сгорания топлива массой 1 кг и состава С + Н + 0= 1: а = L/L(
Глава 6. Система питания карбюраторного двигателя 65 Если в сгорании 1 кг бензина участвует 14,9 кг воздуха, то такая смесь называется нормальной. Коэффициент избытка воздуха определяет количество горючей смеси следующим образом: • богатая смесь — а от 0,5 до 0,8 (значительный недостаток воздуха, смесь сгорает не полностью); • обогащенная смесь — а от 0,85 до 0,95 (незначительный недостаток воздуха). Скорость сгорания смеси возрастает, двигатель развивает наибольшую мощность, но при несколько повышенном расходе топлива вследствие недостаточно полного его сгорания; • бедная смесь — а от 1,1 до 1,2 (значительный избыток воздуха, смесь горит медленно). Большая часть теплоты поглощается стенками цилиндров, что вызывает перегрев двигателя и неустойчивую его работу. Мощность двигателя падает, возрастает расход топлива; • обедненная смесь — а от 1,05 до 1,07 (незначительный избыток воздуха). Мощность двигателя несколько снижается, экономичность заметно повышается, так как происходит наиболее полное сгорание топлива. 6.2. Режимы работы двигателя Карбюраторный двигатель имеет следующие режимы работы: пуск, холостой ход, средние нагрузки, полные нагрузки, резкий переход на полные нагрузки. При пуске холодного двигателя необходима богатая горячая смесь (а от 0,3 до 0,6), так как частота вращения коленчатого вала мала, топливо плохо испаряется, а часть его конденсируется на холодных стенках цилиндра. Это приводит к тому, что в цилиндры двигателя попадает незначительное количество пусковых фракций, обеспечивающих гарантированный пуск двигателя. Работа двигателя на холостом ходу и при малых нагрузках возможна при обогащенной смеси (а от 0,7 до 0,9). Горючая смесь поступает в цилиндры двигателя и смешивается со значительным количеством остаточных отработавших газов, поэтому обогащение смеси улучшает ее воспламеняемость и способствует устойчивой работе двигателя без нагрузки. Средние нагрузки — наибольшая часть работы двигателя в процессе эксплуатации, поэтому на этом этапе необходима обедненная горючая смесь (а от 1,05 до 1,1), что способствует наилучшей экономичности двигателя. Полная нагрузка обеспечивается подачей в цилиндры двигателя обогащенной смеси (а от 0,85 до 0,9). Этот режим необходим при разгоне автомобиля, движении автомобиля с максимальной скоростью, преодолении подъемов или тяжелых участков дороги. При резком переходе на режим полной нагрузки (резкое открытие дроссельной заслонки) возможно обеднение горючей смеси — карбюратор должен иметь устройство, предотвращающее это. Таким образом, в процессе работы двигателя карбюратор должен изменять состав горючей смеси в зависимости от режима работы двигателя. 3 Устройство автомобиля
66 Раздел L Двигатель 6.3. Простейший карбюратор Процесс приготовления горючей смеси из мелко распыленного топлива и воздуха, происходящий вне цилиндров, называется карбюрацией, а прибор, в котором происходит приготовление горючей смеси определенного состава в зависимости от режима работы двигателя, называется карбюратором. Простейший карбюратор (рис. 43) состоит из воздушного патрубка, поплавковой камеры с поплавком и игольчатым клапаном, смесительной камеры, диффузора, главного дозирующего устройства — распылителя и топливного жиклера, дроссельной заслонки. Поплавковая камера служит для поддержания постоянного уровня топлива у распылителя (1,5—2 мм). В смесительной камере происходит смешивание паров топлива с воздухом, образуется топливовоздушная смесь. Распылитель (тонкая трубка) служит для подачи топлива в центр смесительной камеры. Жиклер (калиброванное отверстие) дозирует количество топлива, проходящего к распылителю. Рис. 43. Впускная система карбюраторного двигателя: / — трубопровод; 2 — отверстие в поплавковой камере; 3 — диффузор; 4 — распылитель; 5 — дроссельная заслонка; 6 — смесительная камера; 7 — жиклер; 8 — поплавковая камера; 9 — поплавок; 10 — игольчатый клапан
Глава 6. Система питания карбюраторного двигателя 67 Диффузор (короткий патрубок, суженный внутри) увеличивает скорость воздушного потока в центре смесительной камеры, чем достигается увеличение разряжения у носика распылителя. Дроссельная заслонка регулирует количество горючей смеси, подаваемой в цилиндры двигателя, уменьшая или увеличивая проходное сечение смесительной камеры. Простейший карбюратор работает следующим образом. При такте впуска, из-за создаваемого поршнем разрежения, воздух через воздушный патрубок поступает в диффузор. В диффузоре скорость воздуха, а следовательно, и разряжение увеличиваются. Под действием перепада давлений между поплавковой камерой и диффузором топливо через жиклер распылителя поступает в диффузор, подхватывается потоком воздуха, распыляется и испаряется, образуя топливовоздушную смесь. Из смесительной камеры горючая смесь по впускному трубопроводу поступает в цилиндры двигателя. По мере открытия дроссельной заслонки скорость потока воздуха и разряжение в диффузоре возрастают, что увеличивает расход топлива. Однако необходимого повышения расхода топлива не происходит, горючая смесь обогащается. При работе двигателя на различных режимах простейший карбюратор не может обеспечить горючую смесь постоянного состава. 6.4. Вспомогательные устройства карбюратора Для улучшения характеристик карбюратора используют следующие дополнительные устройства, обеспечивающие приготовление горючей смеси постоянного состава на различных режимах работы двигателя: • пусковое устройство; • систему холостого хода; • систему компенсации горючей смеси; • экономайзер; • ускорительный насос. Пусковое устройство (рис. 44, а) предназначено для значительного обогащения (а от 0,2 до 0,6) горючей смеси при пуске холодного двигателя и представляет собой воздушную заслонку с автоматическим клапаном. Частота вращения коленчатого вала при пуске двигателя низкая, поэтому скорость воздуха, а следовательно, и разрежение в диффузоре небольшие. В смесительную камеру поступает недостаточное количество топлива и для компенсации смесь искусственно обогащают. Воздушной заслонкой перекрывают воздушный патрубок перед диффузором. При этом количество воздуха, поступающего в карбюратор, уменьшается, а разрежение значительно увеличивается, и топливо фонтанирует из распылителя главной дозирующей системы. При первых вспышках в цилиндрах открывается автоматический клапан, и воздух поступает в смесительную камеру. По мере прогрева двигателя постепенно открывается воздушная заслонка. Система холостого хода (рис. 44, б) служит для приготовления обогащенной (а от 0,7 до 0,9) горючей смеси при работе двигателя в режиме хо-
68 Раздел L Двигатель а) б) Рис. 44. Элементы карбюратора: а — работа воздушной заслонки; б — система холостого хода: / — распылитель; 2 — воздушная заслонка; 3 — клапан; 4 — пружина; 5 — смесительная камера; 6 — дроссельная заслонка; 7 — главный жиклер; 8 — воздушный жиклер системы холостого хода; 9 — топливный жиклер системы холостого хода; 10 — канал системы холостого хода; 11 и 13 — отверстия системы холостого хода; 12 — регулировочный винт лостого хода при малой частоте вращения коленчатого вала, когда главная дозирующая система не работает. Система холостого хода состоит из топливного канала, в начале которого установлен топливный жиклер, затем воздушный жиклер. Заканчивается канал двумя отверстиями: одно до дроссельной заслонки, второе за ней. С помощью регулировочного винта изменяется количество и качество горючей смеси. При работе двигателя в режиме холостого хода разрежение в диффузоре при небольшом расходе воздуха незначительно и главная дозирующая система не работает. При этом значительно увеличивается разрежение в полости за закрытой дроссельной заслонкой. Эта полость сообщается через отверстие с полостью под дроссельной заслонкой посредством топливного канала, вследствие чего из поплавковой камеры начинает поступать топливо через топливный жиклер системы холостого хода, а через воздушный жиклер подсасывается воздух. Пузырьки воздуха, смешиваясь с топливом, образуют топливовоздушную эмульсию, которая поступает фонтаном через отверстие под дроссельной заслонкой в смесительную камеру. Получается обогащенная горючая смесь постоянного состава, что необходимо для устойчивой работы двигателя без нагрузки. Количество поступающей эмульсии можно изменять с помощью регулировочного винта. При открытии дроссельной заслонки расход воздуха увеличивается, а разрежение в полости за заслонкой уменьшается, но обеднения смеси не происходит, так как оба отверстия канала системы холостого хода оказываются за дроссельной заслонкой и через них поступает эмульсия, чем и под-
Глава 6. Система питания карбюраторного двигателя 69 держивается необходимый состав горючей смеси. Тем самым обеспечивается плавный переход от режима холостого хода к режимам нагрузки. Система компенсации горючей смеси (рис. 45) обеспечивает приготовление обедненной (а от 1,05 до 1,1) экономичной горючей смеси постоянного состава при работе двигателя на средних нагрузках. В карбюраторах применяют следующие способы компенсации горючей смеси: • регулирование разрежения в диффузоре; • установка двух жиклеров — главного и компенсационного; • пневматическое торможение истечения топлива в главной дозирующей системе. Рис. 45. Работа системы компенсации горючей смеси пневматическим торможением истечения топлива; 1 — распылитель; 2 — воздушная заслонка; 3 — воздушный жиклер: 4 — топливный колодец; 5 — трубка; 6 ~ поплавковая камера; 7 — главный жиклер; 8 — дроссельная заслонка; 9 ~ диффузор Наибольшее распространение получил способ пневматического торможения истечения топлива, где в систему компенсации входит промежуточный колодец, в котором установлена эмульсионная трубка с калиброванными отверстиями в стенках. В верхней части трубки установлен воздушный жиклер. При работе двигателя топливо поступает из поплавковой камеры через главный жиклер и заполняет промежуточный колодец и полость эмульсионной трубки. При движении воздуха через диффузор происходит истечение топлива из колодца. Скорость истечения увеличивается. Уровень топлива в колодце падает, и обнажаются отверстия эмульсионной трубки, через которые воздух через воздушный жиклер системы поступает в колодец, смешиваясь с топливом. Образуется топливовоздушная эмульсия, которая поступает через главный распылитель в смесительную камеру, образуя обедненную горючую смесь постоянного состава, что необходимо для работы двигателя на всем диапазоне средних нагрузок. Экономайзер служит для обогащения (а от 0,85 до 0,9) горючей смеси при работе двигателя на полных нагрузках, подавая дополнительное коли-
70 Раздел L Двигатель чество топлива в смесительную камеру. Привод экономайзера может быть механическим или пневматическим. Экономайзер (рис. 46, а) состоит из клапана с пружиной, установленного в поплавковой камере карбюратора, топливного жиклера, распылителя, топливного канала, толкателя с подвижной стойкой, соединенной с дроссельной заслонкой. При переходе двигателя на режим полной нагрузки, что соответствует открытию дроссельной заслонки больше чем на 80—85 %, толкатель приводной планки входит в контакт с клапаном и открывает его. Топливо через жиклер поступает в смесительную камеру, приготавливая обогащенную горючую смесь постоянного состава, что необходимо для работы двигателя на полных нагрузках. Ускорительный насос (рис. 46, б) служит для обогащения горючей смеси при резком открытии дроссельной заслонки, улучшая приемистость двигателя. Насос может быть с механическим или пневматическим приводом. Он может быть установлен отдельно либо объединен с экономайзером. Ускорительный насос состоит из топливного колодца, поршня со штоком и пружиной, обратного клапана, нагнетательного клапана, топливного канала распылителя, жиклера. В некоторых случаях (обгон, подъем) режим работы двигателя резко меняется. При резком открытии дроссельной заслонки наступает обеднение смеси, так как расход воздуха и подача топлива увеличиваются неодинаково. Для устранения временного обеднения горючей смеси в карбюраторе имеется ускорительный насос. а) б) Рис. 46. Дополнительные устройства карбюратора: a — экономайзер с механическим приводом; б ~ ускорительный насос; 1 — жиклер экономайзера; 2 — тяга; 3 — пружина; 4 — клапан экономайзера; J— шток; 6 — главный жиклер; 7— смесительная камера; #— дроссельная заслонка; 9 — жиклер ускорительного насоса; 10 — рычаг; // — обратный клапан; 12 — поршень; 13 — поводок; 14 — клапан ускорительного насоса
Глава б. Система питания карбюраторного двигателя 71 При резком открытии дроссельной заслонки усилие от приводной планки передается через пружину поршню. В полости под поршнем создается повышенное давление топлива, вследствие чего обратный клапан закрывается. Так как данная полость соединена топливным каналом с нагнетательным клапаном, он открывается, и топливо через распылитель поступает фонтаном в смесительную камеру. Пружина штока, разжимаясь, поддерживает давление впрыска топлива, что необходимо для заполнения топливом главной дозирующей системы. При плавном открытии дроссельной заслонки ускорительный насос не работает, так как топливо из колодца вытесняется поршнем через открытый обратный клапан. 6.5. Устройство карбюраторов Наибольшее распространение в автомобильных двигателях получили многокамерные карбюраторы с падающим потоком (рис. 47, 48), так как они позволяют создать впускную систему с меньшим сопротивлением, обеспечивают более равномерное распределение горючей смеси по цилиндрам. Смесительные камеры работают параллельно или последовательно. В каждой камере устанавливается по два диффузора, что улучшает перемешивание и испарение топлива посредством воздуха, подводимого через кольцевую щель между диффузорами при выходе горючей смеси в большой диффузор. Распылители главной дозирующей системы выведены в малый диффузор, где скорость воздушного потока максимальна. Многокамерные карбюраторы имеют балансированную поплавковую камеру. Это обусловлено тем, что сопротивление воздушного фильтра при засорении увеличивается, следовательно, может увеличиться перепад давления между поплавковой камерой и диффузором, что может привести к перерасходу топлива и повышению токсичности отработавших газов. Балансированная поплавковая камера изолирована от окружающей среды и специальным каналом сообщается с воздушным патрубком карбюратора, что исключает влияние воздушного фильтра на работу карбюратора. На некоторых карбюраторах устанавливается экономайзер принудительного холостого хода. Располагают карбюратор на впускном трубопроводе. Верхняя часть карбюратора состоит из воздушного патрубка с воздушной заслонкой и автоматического клапана и крышки поплавковой камеры; средняя часть — из смесительной камеры с двумя диффузорами в каждой, поплавковой камеры и главного дозирующего устройства в каждой камере (при работе камер последовательно — в одной первичной камере); экономайзер и ускорительный насос общие для двух камер (при работе камер последовательно — экономайзер располагается во вторичной камере, ускорительный насос в первичной); нижняя часть — из смесительной камеры с дроссельными заслонками, каналов системы холостого хода с распылителями в каждой камере (или только в первичной), экономайзера системы принудительного холостого хода.
40 39 38 37 36 35 34 Рис. 47. Карбюратор К-126Б: 1 — клапан экономайзера; 2 — поршень ускорительного насоса; 3 — шток привода экономайзера; 4 — шток привода ускорительного насоса; 5 — крышка поплавковой камеры; 6 — воздушный жиклер главного дозирующего устройства; 7— малый диффузор; 8 — трубка топливного жиклера системы холостого хода; 9 — воздушная заслонка; 10 — блок распылителей экономайзера и ускорительного насоса; // — полый винт; 12 — нагнетательный клапан; 13 — воздушный жиклер системы холостого хода; 14 — распылитель малого диффузора; 15 — игольчатый клапан; 16 — фильтр; 17 — поплавок; 18 — клапан датчика; 19 — пружина; 20 — корпус ротора; 21 — регулировочный винт; 22 — смотровое окно; 23 — мембрана; 24 — пружина ограничителя; 25 — ось дроссельных заслонок; 26 — вакуумный жиклер; 27— прокладка; 28 — воздушный жиклер; 29 — манжета; 30 — главный топливный жиклер; 31 — эмульсионная трубка; 32 — дроссельная заслонка; 33 — регулировочные винты; 34 — корпус смесительных камер; 35 — топливный жиклер системы холостого хода; 36 — подшипник; 37 — кулачковая муфта; 38 — рычаг привода дроссельных заслонок; 39 и 41 — каналы; 40 — шариковый клапан ускорительного насоса; 42 корпус поплавковой камеры
Глава 6. Система питания карбюраторного двигателя 73 б) Рис. 48. Карбюратор К-90: / — корпус воздушной горловины; 2 — игольчатый клапан; 3 — сетчатый фильтр; 4 — пробка фильтра; 5 — канал балансировки поплавковой камеры; 6 — жиклер системы холостого хода; 7 и 13 — воздушные полости; 8 — жиклер полной мощности; 9 — воздушный жиклер; 10 — малый диффузор; //и 22 — кольцевые канавки; 12 — форсунка; 14— полый винт; 15— воздушная заслонка; 16— автоматический клапан; /7— толкатель; 18 ц 34 — пружины; 19 и 21 — штоки; 20 — планка; 23 — корпус; 24 — манжета; 25 ~ пружина манжеты; 26 — втулка штока; 27 — отверстие; 28 — промежуточный толкатель; 29 и 31 — шариковые клапаны; 30 — седло; 32 — тяга; 33 — клапан экономайзера; 35, 39 и 45 — каналы; 36 — пробка; 37 — рычаг; 38 — прокладка; 40 — нагнетательный игольчатый клапан; 41 — электромагнитный клапан (экономайзер); 42 — винты регулировки системы холостого хода; 43 — прямоугольное отверстие; 44 — круглое отверстие системы холостого хода; 46 — дроссельная заслонка; 47 — корпус смесительных камер; 48 — главный жиклер; 49 — поплавок; 50 — пружина поплавка; 51 — ось дроссельных заслонок; 52 и 53 — контакты датчика углового положения дроссельных заслонок; 54 — рычаг На карбюраторах двигателей грузовых автомобилей устанавливают исполнительный диафрагменный механизм ограничителя максимальной частоты вращения коленчатого вала двигателя. 6.6. Ограничитель максимальной частоты вращения коленчатого вала двигателя Ограничитель максимальной частоты вращения коленчатого вала служит для повышения надежности работы двигателя при чрезмерно большой частоте вращения коленчатого вала, предотвращает интенсивный износ деталей. Ограничители максимальной частоты вращения коленчатого вала (ОМЧВКВ) (рис. 49) устанавливают на карбюраторных двигателях грузовых автомобилей.
74 Раздел L Двигатель в) Рис. 49. Пневмоинерционный ограничитель максимальной частоты вращения коленчатого вала двигателя автомобиля ЗИЛ-508.10 (а) и его расположение на двигателе (б): 1 — дроссельные заслонки; 2 и 4 — жиклеры; 3 — рычаг; 5 — пружина мембранного механизма; 6 — крышка мембранного механизма; 7 — мембрана; 8— шток; 9'и 10— отверстия; 11 — кулачковая муфта; 12 — рычаг привода дроссельных заслонок; 13 и 14 — трубки; 15 — пружина центробежного датчика; 16 — паз ротора для соединения с распределительным валом; 17 — уплот- нительная муфта; 18 — крышка; 19 — винт регулировки натяжения пружины; 20 — пробка; 21 — ротор; 22 — втулка из порошкового материала; 23 ~ корпус датчика; 24 — канал; 25 — клапан; 26 — седло клапана; 27 — центробежный датчик; 28 — карбюратор; 29 — мембранный механизм; Аи Б— полости ОМЧВКВ могут быть пневматическими, инерционными и пневмоцен- тробежными. Наибольшее распространение получили пневмоцентробеж- ные ограничители, которые состоят из центробежного датчика, приводимого в движение от распределительного вала, и диафрагменного исполнительного механизма, воздействующего на дроссельные заслонки. Датчик состоит из пустотелого корпуса с крышкой и вращающегося в нем пустотелого ротора, внутри которого установлен клапан с пружиной. Исполнительный механизм состоит из корпуса с крышкой, между которыми жестко крепится диафрагма со штоком и возвратной пружиной. Шток соединен с рычагом, который соединен с осью дроссельных заслонок. Соединение выполнено таким образом, что дает возможность исполнительному механизму менять положение дроссельных заслонок независимо от положения педали управления. Полость, в которой создалось разрежение при работе двигателя, соединена каналами (зона дроссельных заслонок) с наддиафрагменной полостью исполнительного механизма и трубопроводами с полым ротором датчика, а
Глава 6. Система питания карбюраторного двигателя 75 также через открытый клапан с полостью корпуса датчика и далее посредством импульсного трубопровода с поддиафрагменной полостью (над диафрагмой и под ней низкое давление — диафрагма находится в состоянии покоя) и воздушным патрубком карбюратора. Когда частота вращения коленчатого вала достигает максимальной величины, клапан датчика под действием центробежной силы преодолевает сопротивление пружины и садится в седло. Движение воздуха через датчик прекращается. Разрежение в полости над диафрагмой исполнительного механизма резко возрастает, и она прогибается вверх, преодолевая сопротивление возвратной пружины, и посредством штока и рычага прикрывает дроссельные заслонки, частота вращения коленчатого вала понижается. 6.7. Управление карбюратором Управление карбюратором осуществляется из кабины водителя. В кабине находится педаль, соединенная системой тяг и рычагов с рычагом привода дроссельных заслонок. Педаль в исходном положении удерживается пружиной. Для пуска холодного двигателя имеется кнопка, которая связана тросом с рычагом оси воздушной заслонки и дроссельной заслонки. 6.8. Приборы системы питания двигателя Топливный бак. На автомобиле устанавливают один или несколько топливных баков. Объем топливного бака должен обеспечивать 400—600 км пробега автомобиля без заправки. Топливный бак (рис. 50) состоит из двух сварных половинок, выполненных штамповкой из освинцованной стали. Внутри бака имеются перегородки, придающие жесткость конструкции и препятствующие образованию волн в топливе. В верхней части бака приварена наливная горловина, которая закрывается пробкой. Иногда для удобства заправки бака топливом используют выдвижную горловину с сетчатым фильтром. На верхней стенке бака крепится датчик указателя уровня топлива и топливозаборная трубка с сетчатым фильтром. В днище бака имеется резьбовое отверстие для слива отстоя и удаления механических примесей, которое закрыто пробкой. Наливную горловину бака закрывают плотно пробкой, в корпусе которой имеется два клапана — паровой и воздушный. Паровой клапан при повышении давления в баке открывается и выводит пар в окружающую среду. Воздушный клапан открывается, когда идет расход топлива и создается разрежение. Топливные фильтры. Для очистки топлива от механических примесей применяют фильтры грубой и тонкой очистки. Фильтр-отстойник грубой очистки отделяет топливо от воды и крупных механических примесей. Фильтр-отстойник (рис. 51) состоит из корпуса, отстойника и фильтрующего элемента, который собран из пластин толщиной 0,14 мм. На пластинах имеются отверстия и выступы высотой 0,05 мм. Пакет пластин установлен на стержень и пружиной поджимается
76 Раздел I. Двигатель 9 10 11 12 13 14 Рис. 50. Топливный бак (а) и работа выпускного (б) и впускного (в) клапанов: / — фильтр-отстойник; 2 — кронштейн крепления бака; 3 — хомут крепления бака; 4 — датчик указателя уровня топлива в баке; 5 — топливный бак; 6 — кран; 7 — пробка бака; 8 — горловина; 9 — облицовка пробки; 10 — резиновая прокладка; 11 — корпус пробки; 12 — выпускной клапан; 13 — пружина выпускного клапана; 14 — впускной клапан; 15 — рычаг пробки бака; 16 — пружина впускного клапана Рис. 51. Фильтр-отстойник: / — топливопровод к топливному насосу; 2— прокладка корпуса; 3 — корпус-крышка; 4 — топливопровод от топливного бака; 5 — прокладка фильтрующего элемента; 6 — фильтрующий элемент; 7 — стойка; 8 — отстойник; 9 — сливная пробка; 10 — стержень фильтрующего элемента; // — пружина; 12 — пластина фильтрующего элемента; 13 — отверстие в пластине для прохода очищенного топлива; 14 — выступы на пластине; 75 — отверстие в пластине для стоек; 16 — заглушка; 77— болт крепления корпуса-крышки
Глава 6. Система питания карбюраторного двигателя 77 к корпусу. В собранном состоянии между пластинами имеются щели, через которые проходит топливо. Крупные механические примеси и вода собираются на дне отстойника и через отверстие пробки в днище периодически удаляются. Фильтр тонкой очистки. Для очистки топлива от мелких механических примесей применяют фильтры тонкой очистки (рис. 52), которые состоят из корпуса, стакана-отстойника и фильтрующего сетчатого или керамического элемента. Керамический фильтрующий элемент — пористый материал, обеспечивающий лабиринтное движение топлива. Фильтр удерживается скобой и винтом. Топливопроводы соединяют приборы топливной системы и изготовляются из медных, латунных и стальных трубок. Топливный насос служит для подачи топлива через фильтры из бака в поплавковую камеру карбюратора. Применяют насосы диафрагменного типа с приводом от эксцентрика распределительного вала. Насос (рис. 53) состоит из корпуса, в котором крепится привод — двуплечий рычаг с пружиной, головки, где размещены впускные и нагнетательные клапаны с пружинами, и крышки. Между корпусом и головкой зажаты края диафрагмы. Шток диафрагмы к рычагу привода крепится шарнирно, что позволяет диафрагме работать с переменным ходом. Когда двуплечий рычаг (коромысло) опускает диафрагму вниз, в полости над диафрагмой создается разрежение, за счет чего открывается впускной клапан и наддиафрагменная полость заполняется топливом. При сбе- гании рычага (толкателя) с эксцентрика диафрагма поднимается вверх под действием возвратной пружины. Над диафрагмой давление топлива повы- а) 6) Рис. 52. Фильтры тонкой очистки топлива с фильтрующими элементами: a — сетчатым; б — керамичесим; 1 — корпус; 2 — входное отверстие; 3 — прокладка; 4 — фильтрующий элемент; 5 — съемный стакан-отстойник; 6 — пружина; 7 — винт крепления стакана; 8 — канал для отвода топлива
78 Раздел L Двигатель Рис. 53. Топливный насос: / — крышка; 2 — соединительный винт; 3 — сетчатый фильтр; 4 — резиновая прокладка; 5 — головка насоса; 6 — впускной клапан; 7 — мембрана; 8 — возвратная пружина коромысла; 9 — коромысло; 10 — рычаг ручной подкачки топлива; 11 — упорная шайба; 12 — шток; 13 — пружина мембраны; 14 — корпус насоса; 75 — выпускной клапан; 16 — штуцер для отвода топлива; 17 — штуцер для подвода топлива; 18 — контрольное отверстие шается, впускной клапан закрывается, открывается нагнетательный клапан и топливо поступает через фильтр тонкой очистки в поплавковую камеру карбюратора. При смене фильтров поплавковую камеру заполняют топливом с помощью устройства для ручной подкачки. В случае выхода диафрагмы из строя (трещина, прорыв и т. п.) топливо поступает в нижнюю часть корпуса и вытекает через контрольное отверстие. Воздушный фильтр служит для очистки воздуха, поступающего в карбюратор, от пыли. Пыль содержит мельчайшие кристаллы кварца, который, оседая на смазанных поверхностях деталей, вызывает их изнашивание. Требования, предъявляемые к фильтрам: • эффективность очистки воздуха от пыли; • малое гидравлическое сопротивление; • достаточная пылеемкость: • надежность; • удобство в обслуживании; • технологичность конструкции. По способу очистки воздуха фильтры делятся на инерционно-масляные и сухие. Инерционно-масляный фильтр (рис. 54) состоит из корпуса с масляной ванной, крышки, воздухозаборника и фильтрующего элемента из синтетического материала. При работе двигателя воздух, проходя через кольцевую щель внутри корпуса и, соприкасаясь с поверхностью масла, резко изменяет направление движения. Вследствие этого крупные частицы пыли, находяшиеся в воздухе, прилипают к поверхности масла. Далее воздух проходит через фильтрующий элемент, очищается от мелких частиц пыли и поступает в
Глава б. Система питания карбюраторного двигателя 79 7 8 9 10 Рис. 54. Инерционно-масляные воздушные фильтры: а — двигателя автомобиля ЗИЛ-4314.10; б — дизеля ЯМЗ-236; 7 и 11 — переходники; 2 — масляная ванна; 3 — отражатель; 4, 5, 10, 19 и 20 — уплотнительные прокладки; 6 — фильтрующий элемент; 7 — стяжной винт; 8 — гайка-барашек; 9 — винт с барашком; 12 — крышка; 13 — патрубок отбора воздуха в компрессор; 14 — кольцевая щель; 15 — кольцевое окно; 16 — корпус фильтра; 17 — полость; 18 — корпус глушителя системы впуска; 21 — центральная труба карбюратор. Таким образом, воздух проходит двухступенчатую очистку. При засорении фильтр промывают. Воздушный фильтр сухого типа состоит из корпуса, крышки, воздухозаборника и фильтрующего элемента из пористого картона. При необходимости фильтрующий элемент меняют.
80 Раздел I. Двигатель Впускной трубопровод (рис. 55) служит для подачи горючей смеси из карбюратора в цилиндры двигателя. Их, как правило, отливают из алюминиевых сплавов. Впускные трубопроводы подогреваются охлаждающей жидкостью или отработавшими газами, что способствует испарению топливной пленки. Выпускной трубопровод предназначен для отвода отработавших газов к приемным трубам и глушителю. Выпускной трубопровод отливают из чугуна. Теплоту отработавших газов используют для подогрева горючей смеси на выпуске. Для этой цели впускной и выпускной трубопроводы соединяются шпильками через железоасбестовую прокладку. 17 16 Рис. 55. Элементы систем впуска и выпуска отработавших газов и подогрева горючей смеси: а — впускной и выпускной трубопроводы двигателя автомобиля ГАЗ-3102 «Волга»; б, в — положения заслонки, соответствующие наименьшему и наибольшему подогреву смеси соответственно; г — глушитель системы выпуска; / — впускной трубопровод; 2 — прилив для установки карбюратора; 3 — отверстие для штуцера трубопровода вакуумного усилителя тормозных механизмов; 4 — прокладка; 5 — выпускной трубопровод; 6 — сектор регулировки подогрева; 7 — стопорная шпилька и гайка; 8 — заслонка; 9 и 14 — днища глушителя; 10 — корпус; П — перегородка; 12 — камера; 13 — внутренняя труба; 15 — выпускная труба; 16 — патрубки передней стенки глушителя; 17 — приемные трубы глушителя
Глава 6. Система питания карбюраторного двигателя 81 Глушитель. В момент открытия выпускных клапанов давление отработавших газов 0,3—0,5 МПа, а температура свыше 1000 К. Через клапаны отработавшие газы проходят с большой скоростью, и их выпуск отличается высоким уровнем шума. Глушитель (см. рис. 55, г) состоит из корпуса с вваренными днищами, внутренних труб с отверстиями и перегородок, образующих резонансные камеры. Отработавшие газы по приемным трубам поступают в глушитель. Двигаясь по внутренним трубам, газы выходят через отверстия в камеры, после чего они вновь поступают в трубы. Это повторяется несколько раз. Затем они попадают в выпускную трубу. 6.9. Нейтрализация отработавших газов Тепловые двигатели выбрасывают в окружающую среду большое количество токсичных веществ, отрицательно действующих на человека, флору и фауну, а также технические сооружения. Источниками токсичных веществ являются отработавшие газы, картерные газы, испарения из системы питания двигателя, топливо, масло и другие эксплуатационные жидкости. Имеются международные нормативные документы, определяющие требования по ограничению токсичности и дымности отработавших газов. При работе двигателя выделяются следующие токсичные вещества: • оксиды азота (NOx); • сажа (С); • оксид углерода (СО); • углеводороды (СНХ); • альдегиды; • канцерогенные вещества; • различные соединения серы и свинца. Уменьшить токсичность отработавших газов можно путем: • усовершенствования процессов смесеобразования и сгорания; • организации рециркуляции отработавших газов; • нейтрализации отработавших газов; • применения топлив улучшенного качества и альтернативных топлив. Каталитический нейтрализатор. Для снижения токсичности отработавших газов широко применяются каталитические нейтрализаторы, которые различаются по используемому катализатору и материалу блока носителя катализатора. В нейтрализаторах отработавшие газы проходят через слой катализатора, значительно ускоряющего протекание окислительных реакций, при которых СО и СН преобразуются в С02 и Н20. Для восстановления NOx необходимо создать восстановительную среду, т. е. химически связать кислород, находящийся в отработавших газах. Поэтому катализатор разделен на две камеры: восстановления и окисления. В первой камере оксид азота под действием катализатора превращается в аммиак, который подвергается разложению во второй камере, где происходит дожигание оксида углерода и углеводородов.
82 Раздел L Двигатель 6.10. Электронная система впрыска топлива Карбюраторное питание бензиновых двигателей, безусловно, уступает системам питания с электронным дозированием топлива. Системы впрыска бензина более сложны из-за наличия большого числа прецизионных подвижных и электронных элементов и требуют более высокой квалификации обслуживающего персонала. Топливные системы классифицируют по следующим признакам: • по способу подачи топлива — непрерывный и прерывистый; • по типу дозирующих узлов — плунжерные насосы, распределители, форсунки, регуляторы давления; • по способу регулирования количества горючей смеси — пневматическое, механическое, электронное; • по основным параметрам регулирования состава смеси — разряжению во впускной системе, углу поворота дроссельной заслонки, расходу воздуха. Впрыск бензина позволяет более точно распределить топливо по цилиндрам из-за отсутствия добавочного сопротивления потоку воздуха на впуске в виде карбюратора и диффузоров. Более высокий коэффициент наполнения цилиндров обеспечивает получение более высокой мощности двигателя. При впрыске возможно большее перекрытие клапанов. Лучшая продувка и большая равномерность состава горючей смеси по цилиндрам снижают температуру деталей, что в свою очередь позволяет уменьшить октановое число топлива на 2—3 единицы, т. е. поднять степень сжатия без опасности детонации. Система впрыска «K-Jetronic» фирмы «BOSCH» (рис. 56, 57) представляет собой механическую систему постоянного впрыска топлива и включает в себя топливный бак, топливный электронасос, накопитель топлива, топливный фильтр, расходомер воздуха с напорным диском, дозатор распределительного топлива, регулятор давления топлива, регулятор управляющего давления воздуха, форсунки, пусковую электромагнитную форсунку. Количество впрыскиваемого топлива строго пропорционально количеству поступающего воздуха. Это соотношение 1 14,7. При работе двигателя топливный электронасос забирает топливо из бака и подает его под давлением (0,5 МПа) через накопитель и фильтр к дозатору распределителя. Далее топливо поступает к форсункам, установленным перед впускными клапанами во впускном трубопроводе. Форсунки непрерывно распыляют топливо. Если при карбюраторном питании дроссельная заслонка регулирует количество подаваемой в цилиндры горючей смеси, то при системе впрыска дроссельная заслонка регулирует только подачу чистого воздуха. Для того чтобы установить требуемое соотношение между количеством поступающего воздуха и количеством впрыскиваемого бензина, используется расходомер воздуха с напорным диском и лоза- тор-распределитель топлива. При пуске холодного двигателя электронасос быстро повышает давление топлива. Если температура двигателя менее 35 °С, термореле включает
Глава б* Система питания карбюраторного двигателя 83 Рис. 56. Система впрыска топлива «K-Jetronic»: 1 — топливный бак; 2 — топливный фильтр; 3 — накопитель топлива; 4 — топливный насос; 5 — регулятор управляющего давления; 6 — термореле; 7 — пусковая электромагнитная форсунка; 8 — форсунка впрыска; 9 — клапан добавочного воздуха; 10 — дроссельная заслонка; 11 — регулировочный винт системы холостого хода; 12 — расходомер воздуха; 13 — дозатор-распределитель; 14 — регулятор давления топлива; а — канал подвода топлива к рабочим форсункам; б — канал подвода топлива к дозатору-распределителю; в — канал подвода топлива к пусковой форсунке с электромагнитным управлением; г — канал слива топлива в бак; д — канал толчкового клапана; е — канал управляющего давления 7 8 9 а Рис. 57. Главная дозирующая система и система холостого хода системы впрыска «K-Jetronic»: 1 — топливный бак; 2 — топливный фильтр; 3 — накопитель топлива; 4 — топливный насос; 5— регулятор управляющего давления топлива; 6 — форсунка (инжектор); 7 — регулировочный винт системы холостого хода; 8 — дроссельная заслонка; 9 — напорный диск расходомера воздуха; 10 — дозатор-распределитель топлива; 11 — регулятор давления питания; а — канал подвода топлива к форсункам; б — канал управляющего давления; в — канал толчкового клапана; г — канал слива топлива в бак; д — канал подвода топлива к дозатору-распределителю
84 Раздел L Двигатель пусковую форсунку с электромагнитным управлением, и она впрыскивает дополнительное количество топлива. Одновременно включается добавочный клапан воздуха. Этим обеспечивается надежный пуск холодного двигателя и устойчивая его работа на холостом ходу. Продолжительность работы пусковой форсунки определяет термореле. При температуре выше 35 °С она отключается. При работе двигателя на частичных нагрузках смесь обогащается или обедняется. Для того чтобы состав рабочей смеси соответствовал режиму работы двигателя в системе впрыска со стороны верхней части плунжера, в распределитель подводится по каналу топливо с управляющим давлением. Если давление большое, сопротивление перемещению плунжера увеличивается — смесь обедняется. В противном случае сопротивление перемещению плунжера уменьшается — смесь обогащается. При резком открытии дроссельной заслонки обогащение смеси обеспечивается моментальной реакцией напорного диска. 6.11. Система питания двигателя автомобиля, работающего на альтернативном топливе Газовое топливо по сравнению с жидким имеет следующие преимущества: • высокое октановое число позволяет значительно повысить степень сжатия, следовательно, увеличится экономичность двигателя; • в результате более полного сгорания газового топлива в отработавших газах содержится меньше токсичных веществ; • возрастает срок службы двигателя, так как отсутствует конденсация топлива и смыв масла со стенок цилиндров; • увеличивается срок службы свечей зажигания и глушителя вследствие незначительного нагарообразования. Автомобили, работающие на альтернативном топливе, имеют следующие недостатки: • уменьшается мощность двигателя из-за более низкой теплоты сгорания топлива; • снижается грузоподъемность автомобиля из-за наличия баллонов; • более трудоемкое техническое обслуживание. Автомобили могут работать на сжатом или сжиженном газе. В качестве сжатых газов применяют природный газ, метан (давление в баллоне 20 МПа), в качестве сжиженных газов (давление в баллонах 1,6 МПа) — этан, пропан, бутан и др. Газобаллонная установка грузового автомобиля для сжатого газа включает в себя: восемь газовых баллонов, соединенных трубками; двухступенчатый газовый редуктор высокого давления; электромагнитный клапан с газовым фильтром; газопроводы; манометры высокого и низкого давления; подогреватель газа; газовые вентили — наполнительный, баллонный и магистральный; карбюратор-смеситель, приборы резервного топлива.
Глава 6. Система питания карбюраторного двигателя 85 При работе двигателя подача газа из баллонов в систему подачи топлива происходит через два запорных устройства — расходный вентиль и электромагнитный клапан с газовым фильтром. Перед пуском двигателя открывают расходный вентиль. Манометр должен показать наличие газа в баллонах. Газ по трубопроводу поступает в редуктор, где давление автоматически снижается до 0,1 МПа. По пути к редуктору газ подогревается. Затем газ по шлангу поступает в карбюратор-смеситель для образования газовоздушной смеси и далее в цилиндры двигателя. Для работы на резервном топливе (бензине) автомобиль имеет топливный бак, фильтр-отстойник, топливный насос, топливопроводы. Газобаллонная установка, работающая на сжиженном газе (рис. 58), состоит из газовых баллонов, испарителя газа, двухступенчатого газового редуктора, манометров высокого и низкого давления, электромагнитного клапана с газовым фильтром, карбюратора-смесителя, приборов резервного топлива. Газовый баллон снабжен контрольным вентилем уровня жидкости, предохранительным клапаном, указателем уровня жидкости, вентилем расхода газа. 17 18 Рис. 58. Газобаллонная установка для сжиженного газа: / — магистральный вентиль; 2 — манометр баллона; 3 — паровой вентиль; 4 — предохранительный клапан; 5 — баллон для сжиженного газа; 6 — контрольный вентиль; 7 — накопительный вентиль баллона; 8 — указатель уровня сжиженного газа; 9 — жидкостной вентиль; 10 — манометр редуктора; 11 — двигатель; 12 — карбюратор; 13 — смеситель газа; 14 — бак для бензина; 15 — газовый редуктор; 16 — испаритель сжиженного газа; 17— штуцер для подвода горячей воды; 18— штуцер для отвода воды; 19 — кран для слива воды
86 Раздел L Двигатель Сжиженный газ перед использованием переводят в газообразное состояние. Из баллона жидкий газ при открытом магистральном вентиле поступает через электромагнитный клапан с газовым фильтром к испарителю, где подогревается охлаждающей жидкостью системы охлаждения двигателя. Жидкость испаряется, и в парообразном состоянии газ поступает в фильтр, а затем в двухступенчатый газовый редуктор, где давление газа снижается до 0,1 МПа. Далее газ проходит через дозирующее устройство в карбюратор и при такте впуска поступает в цилиндры двигателя. Газовый манометр показывает давление газа в редукторе. 6.12. Приборы Баллоны служат резервуарами для сжатого или сжиженного газа. Для сжатого газа баллоны изготовляются из бесшовных труб легированной стали и подвергаются термической обработке для повышения прочности и обеспечения безосколочности при разрушении. На переднем днише баллона сжиженного газа расположены вентили и приборы. На баллоне указываются завод-изготовитель, масса, вместимость, дата изготовления, клеймо контролера ОТК завода. Вентили. Наполнительный вентиль служит для заправки баллона, контрольный — для контроля за его наполнением. Наполнительный вентиль мембранного типа состоит из корпуса, крышки, штока, соединенного с мембраной, клапаном и маховиком. В корпусе вентиля установлен обратный клапан с пружиной и ввернутой пробкой. Предохранительный клапан предотвращает повышение давления газа выше 1,6 МПа и состоит из корпуса, клапана с резиновым уплотнителем, штока и пружины. Если в баллоне давление превысит 1,6 МПа, то газ, преодолевая усилие пружины, откроет клапан и выйдет в окружающую среду. Расходный вентиль служит для подачи топлива в газообразном или жидком состоянии и состоит из корпуса, крышки, штока с уплотнителем, упорного винта с маховиком. В корпус вентиля ввернут корпус скоростного клапана с пружиной, который обеспечивает быстрое автоматическое прекращение подачи газа из баллона в случае резкого увеличения расхода газа, при обрыве или повреждении трубопровода магистрали. Датчик уровня сжиженного газа устанавливается в баллоне для контроля. Электромагнитные запорные клапаны, объединенные с фильтрующими элементами, выполняют функции магистральных вентилей в газовой и бензиновой системах подачи топлива. Клапан приводится в действие через выключатель зажигания и переключатель «Газ-Бензин». Электромагнитный клапан с газовым фильтром имеет разборный фильтрующий элемент. В обойме установлены, чередуясь, две фетровые шайбы и три медные сетки. Обойма удерживается в поджатом положении пружиной. Газ при открытом расходном вентиле через штуцер и полый болт поступает в отстойник и проходит фильтрующий элемент. Клапан подачи газа под действием пружины электромагнита прижат к седлу корпуса фильтра и закрывает выходное отверстие. При включении зажигания якорь
Глава 6. Система питания карбюраторного двигателя 87 втягивается в электромагнитную катушку и клапан открывает отверстие для поступления газа через испаритель в редуктор низкого давления. Электромагнитный клапан с бензиновым фильтром состоит из алюминиевого каркаса с двумя слоями латунной сетки и пружины, поджимающей сетку к каркасу. Бензин, подаваемый насосом, поступает в полость стакана отстойника, где фильтруется. При включении зажигания якорь втягивает клапан, и бензин поступает через выходной штуцер в карбюратор-смеситель. Газовый редуктор (рис. 59, а) предназначен для уменьшения давления, автоматического изменения количества газа, поступающего к карбюрато- 24 25 26 27 б) Рис. 59. Элементы газобаллонной установки: а — двухступенчатый редуктор; б — газовый смеситель; 1 — дозатор; 2 — мембрана второй ступени; 3 — цилиндрическая пружина разгрузочного устройства; 4 — шток; 5 — коническая пружина разгрузочного устройства; 6 — мембрана разгрузочного устройства; 7 — предохранительный клапан; 8 — клапан первой ступени; 9 — пружина первой ступени; 10 — рычаг клапана первой ступени; 11 — мембрана первой ступени; 12 — клапан второй ступени; 13 — клапан экономайзера; 14 — пружина мембраны; 15 — мембрана дозирующего экономайзерного устройства; 16 и 19 — каналы; /7— рычаг клапана второй ступени; 18 — упор; 20 — выходной патрубок; 21 — ограничитель частоты вращения коленчатого вала; 22 — газовый смеситель; 23 — рычаг дроссельных заслонок; 24 — газо- подводящий патрубок; 25 — обратный клапан; 26 — корпус смесителя; 27 — дроссельная заслонка; 28 — регулировочный винт минимальной частоты вращения коленчатого вала на режиме холостого хода; 29 — регулировочный винт обшей подачи газа в систему холостого хода; 30 — штуцер для подвода газа в систему холостого хода; 31 — диффузор; 32 — газовая форсунка; 33 — воздушная заслонка; А — полость разгрузочного устройства; Б — полость атмосферного давления; В — полость второй ступени (низкого давления газа); Г— полость первой ступени (высокого давления газа); Д — полость атмосферного давления первой ступени; Е — полость дозирующего экономайзерного устройства
88 Раздел L Двигатель ру-смесителю (в зависимости от режима работы двигателя), и быстрого выключения подачи газа при любой остановке двигателя. Универсальный двухступенчатый газовый редуктор давления состоит из первой ступени редуцирования высокого давления с газовой полостью, разгрузочного устройства с газовой полостью и выходного патрубка с дозатором. При открытом магистральном вентиле газ свободно поступает в первую ступень через сетчатый фильтр и шариковый клапан. Вследствие этого давление в полости первой ступени редуцирования повышается и мембрана, преодолевая сопротивление калиброванной пружины, прогибается вниз и действует через коленчатый рычаг на шариковый клапан. При повышении давления в полости первой ступени редуцирования до определенной величины клапан закрывается. Если двигатель не работает, подача газа прекращается. Когда коленчатый вал двигателя начинает проворачиваться, то во впускном трубопроводе возникает разрежение, которое по каналу передается в полость разгрузочного устройства. При давлении 800—900 Па кольцевая мембрана разгрузочного устройства, преодолевая сопротивление пружины, прогибается вниз. Упоры отводятся от мембраны и частично разгружают пластинчатый эластичный клапан, который под давлением газа открывается и газ поступает в полость низкого давления второй ступени. Далее через дозирующее отверстие и патрубок газ засасывается в смеситель. На режимах холостого хода и малых нагрузках в полости низкого давления второй ступени возникает избыточное давление (50—100 Па). Этого оказывается достаточно, чтобы в условиях резкого открытия дроссельной заслонки исключить переобеднение смеси. При полных нагрузках срабатывает пневматический диа- фрагменный привод клапана экономайзера, и поддиафрагменная полость экономайзера через канал сообщается с впускным трубопроводом. Через клапан экономайзера и канал газ поступает непосредственно в патрубок параллельно с подачей его дозатором, благодаря чему смесь обогащается. Карбюратор-смеситель (рис. 59, б) предназначен для приготовления газовоздушной горючей смеси. Газосмесительные устройства форсуночного типа с автономной системой холостого хода имеют отдельные корпуса. Карбюратор-смеситель дает возможность работать двигателю как на газовом топливе, так и на бензине. Подача газа на рабочем режиме двигателя производится через форсунки, расположенные в газосмесительном устройстве. Работа двигателя. Пуск двигателя осуществляется стартером. Перед пуском двигателя следует проверить газовую аппаратуру и убедиться в ее герметичности. При пуске холодного двигателя необходимо открыть паровой вентиль баллона, а при пуске прогретого двигателя — жидкостной вентиль и по показанию манометра проверить наличие газа в первой ступени редуктора. Для ускорения пуска двигателя заполняют газом газопровод от редуктора до карбюратора смесителя принудительным открытием клапана второй ступени, кратковременно нажимая на стержень штока мембраны второй ступени. Перемещают рукоятку управления дроссельными заслонками на половину длины ее хода и пускают двигатель. Далее двигатель прогревают на малой частоте вращения коленчатого вала. Как только температура охлаждающей жидкости достигает заданной величины, открывают
Глава 7. Система питания дизеля 89 расходный жидкостной вентиль и закрывают расходный паровой вентиль. После прогрева двигателя нажимают кнопку ручного управления дроссельными заслонками. Для останова двигателя выключают зажигание. Глава 7 Система питания дизеля Система питания дизеля обеспечивает раздельную подачу в цилиндры двигателя воздуха и топлива и выпуск отработавших газов. По экономичности дизели значительно превосходят карбюраторные двигатели. Удельный расход топлива карбюраторного бензинового двигателя 154—182 г/(кВт ч), дизеля — 112—140 гДкВт ч). Система питания дизеля (рис. 60) топливом состоит из топливного бака, фильтра грубой очистки топлива, топливоподкачивающего насоса, фильтра тонкой очистки, топливного насоса высокого давления, автоматической муфты опережения впрыска топлива, всережимного регулятора, форсунки, топливопроводов (высокого давления, низкого давления и сливного). Система питания дизеля воздухом состоит из воздухоочистителя, впускного трубопровода, турбокомпрессора. Система выпуска отработавших газов включает в себя выпускной трубопровод, приемные трубы, глушитель. Работа системы питания. Топливо из бака через фильтр грубой очистки по топливопроводу поступает к топливоподкачивающему насосу, далее подается по топливопроводу к фильтру тонкой очистки, затем — к насосу высокого давления. Насос по топливопроводам высокого давления подает топливо в форсунки. При такте впуска в цилиндр поступает очищенный в воздухоочистителе воздух. В конце такта сжатия в цилиндр под высоким давлением через форсунку впрыска в мелко распыленном виде подается определенная порция топлива, которая самовоспламеняется вследствие высокой температуры. Отработавшие газы поступают в выпускной трубопровод и через приемные трубы и глушитель в окружающую среду. Дизельное топливо. Фракции продуктов переработки нефти, выкипающие до 390 °С, служат основой для производства дизельного топлива, получившего название от типа двигателя, в котором оно используется. Этот вид топлива предназначен для высокооборотных дизелей. Смесь дизельного топлива с остаточными продуктами (до 80 %) прямой перегонки или крекинга нефти называют тяжелым дизельным топливом. Тяжелое дизельное топливо предназначено для малооборотных и среднеоборотных дизелей. В зависимости от климатических условий и времени года применяется дизельное топливо различных марок: Л (летнее), 3 (зимнее), А (арктическое). В дизеле воспламенение топлива происходит самопроизвольно без внешнего искрового устройства и с минимальной задержкой с момента его впрыска в горячую камеру сгорания. Важнейшим показателем дизельного топлива является воспламеняемость. Топливо, обладающее большей способностью к воспламенению, обеспечивает более мягкое протекание процесса сгорания без резкого повышения давления и стуков в цилиндре дви-
90 Раздел L Двигатель Рис. 60. Топливные системы четырехтактных дизелей: а — ЯМЗ-236; б — КамАЗ-740; 1 — фильтр тонкой очистки топлива; 2, 3, 7, 10, 12, 14, 15—18, 20 и 23—27 — топливопроводы; 4 — воздухоочиститель; 5 — насос высокого давления; 6 — форсунка; 8 — фильтр грубой очистки топлива; 9 — топливный бак; 11 и 28 — топливоподкачивающие насосы; 13 — перепускной клапан; 19 — кран отбора топлива к подогревателю; 21 и 22 — тройники гателя. Таким топливом является цетан, воспламеняемость которого принята за 100 единиц. Воспламеняемость альфаметилнафталина принята за 0. Воспламеняемость дизельных топлив оценивают цетановым числом, которое равно объемному содержанию цетана в такой его смеси с альфаметил- нафталином, которая при стандартных условиях испытания имеет одинаковую воспламеняемость с данным топливом. В современных дизелях применяют топливо с цетановым числом 40—55.
Глава 7. Система питания дизеля 91 7.1. Смесеобразование в дизелях Процесс смесеобразования происходит в течение короткого промежутка времени внутри цилиндра, когда поршень находится вблизи ВМТ. К началу подачи топлива — в конце такта сжатия давление в цилиндре составляет примерно 3,5—4,5 МПа, а температура — 800—900 К. Смесеобразование представляет собой процесс испарения мелко распыленного топлива и перемешивание его паров с воздухом. Каждая частица топлива должна войти в соприкосновение с воздухом как можно скорее, чтобы выделение теплоты произошло в начале хода расширения. Для улучшения смесеобразования и повышения однородности смеси коэффициент избытка воздуха составляет от 1,4 до 1,7. Равномерное распределение топлива по объему камеры сгорания осуществляется за счет кинематических энергий распыленного топлива и движущегося воздуха, определяемых формой камеры сгорания и скоростью движения поршня. В современных дизелях находит применение объемное, объемно-пленочное, пленочное, вихрекамерное и предкамерное смесеобразование. Способ смесеобразования обусловлен формой камеры сгорания, которая в сочетании с топливоподаюшей аппаратурой определяет условия процессов смесеобразования и сгорания. Двигатель с непосредственным впрыском топлива обеспечивает наиболее экономичный рабочий цикл и хорошие пусковые свойства двигателя. 7.2. Период задержки самовоспламенения топлива Продолжительность периода задержки самовоспламенения топлива относительно момента начала впрыска топлива определяет характер протекания всего процесса сгорания. При длительном периоде задержки воспламенения в камере сгорания испаряется большое количество впрыснутого топлива, и в дальнейшем, вследствие вовлечения этого топлива в процесс сгорания, давление повышается и увеличивается «жесткость» работы дизеля. Поэтому стремятся уменьшить до определенного предела период задержки воспламенения топлива. В зависимости от условий протекания процесса сгорания продолжительность периода задержки воспламенения топлива составляет 0,0005—0,0002 с. На продолжительность периода задержки воспламенения топлива и на характер процесса сгорания влияют следующие факторы: • физические и химические свойства топлива; • температура и давление воздуха в период впрыска топлива; • характер и интенсивность вихревого движения воздуха в камере сгорания; • работа топливоподающей аппаратуры; • конструкция камеры сгорания; • угол опережения начала впрыска топлива; • нагрузка и частота вращения коленчатого вала. Для наиболее эффективного протекания процесса сгорания необходимо, чтобы его продолжительность была как можно меньше, а давление в
92 Раздел L Двигатель камере сгорания повышалось плавно. Очень резкое повышение давления приводит к «жесткой» работе двигателя. 7.3. Приборы системы питания дизеля Фильтр грубой очистки топлива предназначен для очистки топлива от грубых механических примесей и воды и работает как отстойник. Фильтр грубой очистки топлива двигателя ЯМЗ-236М (рис. 61, а) состоит из корпуса с крышкой и сменного фильтрующего элемента из хлопковой нити, намотанной на металлический трубчатый перфорированный каркас. Плотное соединение фильтрующего элемента с корпусом и крышкой достигается тем, что трехгранные кольцевые ребра крышки и днища корпуса вдавливаются в мягкие торцевые поверхности фильтра. Топливо по трубопроводу поступает в полость между стенками корпуса и фильтрующим элементом. Пройдя через фильтр, очищенное топливо поступает внутрь каркасной трубки и далее к топливоподкачивающему насосу. На внешней поверхности фильтрующего элемента и на днище корпуса осаждаются механические примеси. Для удаления воздуха при замене фильтра в верхней части крышки имеется резьбовое отверстие, закрытое пробкой. в) б) Рис. 61. Фильтры грубой очистки топлива двигателей: а — ЯМЗ-236М; б — КамАЗ-740.10 и ЗИЛ-645; / — сливная пробка; 2 — фильтрующий элемент; 3 — корпус; 4, 7 к 13 — отврстия; 5— крышка; 6— пробка; 8 — прокладка; 9 — распылитель; 10 — отражатель; // — фильтрующая сетка; 12 — успокоитель
Глава 7. Система питания дизеля 93 На двигателях КамАЗ-740.10 и ЗИЛ-645 фильтр грубой очистки (рис. 61, б) состоит из корпуса, крышки, распылителя, отражателя, фильтрующей сетки и успокоителя. Топливо подается к распылителю и стекает по отражателю в корпус. Крупные механические примеси и вода осаждаются на дне корпуса, а топливо, прошедшее фильтрующую сетку, поступает по трубопроводу низкого давления к топливоподкачивающему насосу. Фильтр тонкой очистки топлива предназначен для очистки топлива от более мелких примесей. Фильтр двигателей ЯМЗ-236М (рис. 62, а) состоит из корпуса, крышки и фильтрующего элемента, представляющего собой перфорированный металлический трубчатый каркас, обмотанный тканью, на котором сформирована фильтрующая масса из древесной муки, пропитанной пульвербакелитом. Фильтрующий элемент прижат к крышке пружиной. Топливо, подаваемое топливоподкачивающим насосом, заполняет полость корпуса и проходит через фильтрующий элемент, далее поднимается вдоль стержня крепления и поступает к насосу высокого давления. В крышке ввернут штуцер с калиброванным отверстием, через которое топливо сливается в бак. На двигателях КамАЗ-740.10 и ЗИЛ-645 фильтр тонкой очистки топлива (рис. 62, б) состоит из крышки, двух корпусов со стержнями и фильтрующих элементов, прижатых к крышке пружинами. Фильтрующие элементы, изготовленные из специальной бумаги, работают параллельно. 12 7 12 8 Рис. 62. Фильтры тонкой очистки топлива двигателей: а — ЯМЗ-236М; б — КамАЗ-740Л0 и ЗИЛ-645; 7 — сливная пробка; 2 — пружина фильтрующего элемента; 3, 77, 13 и 14 — прокладки; 4 — фильтрующий элемент; 5 — корпус; 6 — стержень; 7 — крышка; 8 к 12— пробки; 9 — штуцер с калиброванным отверстием; 10 — болт
94 Раздел L Двигатель Топливоподкачивающий насос. В системах топливоподачи дизелей применяют поршневые насосы, которые служат для подачи топлива через фильтры к топливному насосу высокого давления (ТНВД). Топливоподкачивающий насос крепится к корпусу ТНВД с приводом от эксцентрика его кулачкового вала и имеет ручной привод для заполнения топливом фильтров и удаления воздуха из топливной системы. Топливоподкачивающий насос (рис. 63) состоит из корпуса, в котором имеются топливные каналы, в средней части находится отверстие под поршень и роликовый толкатель; возвратных пружин поршня и толкателя; на- Рис. 63. Топливоподкачивающий насос поршневого типа: а — конструкция; б — схема перепуска топлива; в — схема поступления топлива в насос и подачи его к фильтру тонкой очистки; / — втулка; 2 — шток толкателя; 3, 8, 18 и 22 — пружины; 4 — толкатель; 5 — ось ролика; 6 — ролик; 7 — выпускной клапан; 9 и 16 — прокладки; 10 и 23 — пробки; 11 — корпус цилиндра; 12 — цилиндр; 13 — поршень; 14 — шток поршня; 15 — рукоятка; 17 — втулка цилиндра ручного насоса; 19 — впускной клапан; 20 — корпус насоса; 21 — поршень; 24 — эксцентрик; 25 и 26 — каналы; А — полость над поршнем; Б — полость под поршнем
Глава 7. Система питания дизеля 95 гнетательного клапана; впускного клапана. Над впускным клапаном ввернут цилиндр с поршнем и штоком ручного привода. При работе двигателя эксцентрик набегает на ролик толкателя, который через шток передает усилие на поршень. Последний перемещается, сжимая возвратную пружину. В надпоршневом пространстве давление топлива повышается, впускной клапан закрывается, а нагнетательный открывается, и топливо по каналу перетекает в подпоршневое пространство. Когда эксцентрик сбегает с ролика толкателя, пружина поршня перемещает поршень в обратную сторону. В надпоршневом пространстве создается разрежение, открывается впускной клапан и топливо заполняет надпоршневое пространство. Одновременно в подпоршневом пространстве создается давление топлива, и оно поступает по трубопроводу к фильтру тонкой очистки. Производительность топливоподкачиваюшего насоса выше, чем расход топлива при работе двигателя. При уменьшении расхода топлива двигателем давление в подпоршневои полости повышается, и усилия сжатой пружины поршня недостаточно для преодоления давления топлива, ход поршня уменьшается, и, соответственно, снижается подача топлива насосом. Толкатель при этом свободно перемещается в обе стороны. По мере увеличения расхода топлива двигателем давление в подпоршневои полости уменьшается, активный ход поршня увеличивается и подача топлива насосом возрастает. 7.4. Топливный насос высокого давления Топливный насос высокого давления (ТНВД) (18—20 МПа) подает через форсунки в камеру сгорания топливо в строго определенные моменты и в определенном количестве в зависимости от режима работы двигателя. На автомобильных двигателях применяют ТНВД золотникового типа с постоянным ходом плунжера и регулировкой окончания подачи топлива. Число секций топливного насоса соответствует числу цилиндров двигателя. Каждая секция обслуживает один цилиндр. Привод топливных насосов осуществляется от зубчатых колес распределительного вала. На двигателях марки «ЯМЗ» применяются рядные топливные насосы (рис. 64), которые располагаются между рядами цилиндров. На двигателях марки «КамАЗ» (рис. 65) — двухрядные V-образные топливные насосы. ТНВД двигателей марки «ЯМЗ» состоит из корпуса с крышками, внутри корпуса имеется горизонтальная перегородка, в которой выполнены гладкие отверстия с пазами под роликовые толкатели. В верхней части корпуса имеются резьбовые отверстия крепления насосных секций, топливные каналы, отверстие крепления рейки поворота плунжеров. В нижней части корпуса расположен кулачковый вал привода насосных секций. Роликовый толкатель в верхней части имеет регулировочный болт с контргайкой. Насосная секция (рис. 66) включает в себя плунжер и гильзу, соединенные вместе, которые образуют плунжерную пару. Плунжер диаметром 9 мм имеет ход 10 мм. Для создания высокого давления зазор между плунжером и гильзой составляет 0,00015—0,002 мм. Положение гильзы в насосе
96 Раздел L Двигатель Рис. 64. Топливный насос высокого давления дизеля ЯМЗ-236: / — автоматическая муфта опережения впрыска топлива; >2— гайка; 3 — шпонка; 4~ втулка; 5 — винт-ограничитель; 6 — рейка; 7— перепускной клапан; 8 — корпус насоса; 9 — втулка плунжера; 10 — плунжер; // — ниппель; 12 и 29— пробки; 13 — сапун; 14 — корпус регулятора; 15 — кулачковый вал; 7d— самоподжимная уплотняющая муфта; /7— конический роликоподшипник; 18 — топливоподкачивающий насос; 19 — кулачок; 20 — регулировочная прокладка; 21 — крышка подшипника; 22 — указатель уровня масла; 23 — крышка; 24 — винт крепления крышки; 25 — верхняя тарелка пружины; 26 — зубчатый венец; 27, 37 и 45 — винты; 28 ~ канал отвода топлива; 30 — штуцер; 31 — упор клапана; 32 — колпачковая гайка; 33 — пружина нагнетательного клапана; 34 — нагнетательный клапан; 35 — седло нагнетательного клапана; 36 — канал подвода топлива; 38 — поворотная втулка; 39 — пружина; 40 — нижняя опорная тарелка пружины; 41 — регулировочный болт; 42 — контргайка; 43 — толкатель; 44 — ролик толкателя; 46 — промежуточная опора кулачкового вала
Глава 7. Система питания дизеля 97 Рис. 65. Топливный насос высокого давления дизеля КамАЗ-740: 7 — корпус; 2 — ведущее зубчатое колесо; 3 — сухарь; 4 — фланец ведущего зубчатого колеса; 5 и 25 — шпонки; 6 — эксцентрик привода топли- воподкачивающего насоса; 7 и 24 — гайки; 8 — промежуточное зубчатое колесо; Ри 77 — пальцы; 10 — крышка регулятора; 77 — зубчатое колесо регулятора; 12 — державка грузов; 13 — ось грузов; 14 — груз; /5— упорный шарикоподшипник; 16— муфта; 7#— верхняя крышка; 19 — рычаг пружины; 20— перепускной клапан; 21 — втулка рейки; 22 — рейка; 23 — муфта регулировки опережения впрыска топлива; 26 — самоподжимная уплотняющая муфта; 27 — крышка подшипника; 28 ~- роликоподшипник; 29 — кулачковый вал; 30 — ролик толкателя; 31 — упорная втулка; 32 — пята толкателя; 33 — пружина; 34 — плунжер; 35 — впускное отверстие; 36 — корпус секции; 37 — нагнетательный клапан; 38 — штуцер; 39 — втулка плунжера; 40 — рычаг реек 4 Устройство автомобиля
98 Раздел L Двигатель Рис. 66. Секция насоса: 1 — кулачок распределительного вала; 2 — корпус насоса; 3 — ролик толкателя; 4 — толкатель; 5 — пята толкателя; 6 — тарелка пружины; 7 — пружина; 8 — опорная шайба; 9 — опорная втулка; 10 — плунжер; 11 — штифт; 12 — впускное отверстие; 13 - втулка плунжера; 14 — нагнетательный клапан; 15 — штуцер; 16 и 21 — уплотнительное кольцо секции; 17 — корпус секции насоса; 7# — шайба; 19 — спиральная канавка плунжера; 20 - перепускное отверстие; 22 — рейка; 25 — поворотная втулка плунжера относительно топливных каналов фиксировано стопорным винтом. В верхней части гильзы имеется впускное и перепускное отверстия. Плунжер в верхней части имеет осевое и радиальное отверстия. От радиального отверстия плунжера выполнены две спиральные канавки. На нижнем конце плунжера имеется два выступа, входящих в пазы поворотной втулки, которая поворачивает плунжер, также имеется кольцевая проточка для опорной тарелки возвратной пружины плунжера. Другой конец пружины упирается в верхнюю тарелку, установленную в кольцевой выточке корпуса. На поворотной втулке крепится зубчатый хомутик, находящийся в зацеплении с рейкой поворота плунжеров. Над гильзой плунжера располагается нагнетательный клапан с седлом, упором и возвратной пружиной. Насосная секция в корпусе насоса крепится штуцером. От штуцера через ниппель топливо поступает по топливопроводу высокого давления к форсунке. Работа насосной секции* При вращении кулачкового вала насоса (рис. 66) кулачок набегает на ролик толкателя, который передает усилие на плунжер. Плунжер движется вверх, сжимая возвратную пружину и вытесняя топливо через впускное отверстие в канал насоса. При перекрытии этого отверстия давление топлива постепенно растет, и при давлении
Глава 7. Система питания дизеля 99 1 МПа начинает открываться нагнетательный клапан. Клапан полностью открыт при давлении 1,8 МПа, Плунжер продолжает двигаться вверх, давление топлива в надплунжерном пространстве растет. При достижении требуемого для впрыска топлива давления (17—20 МПа) игла распылителя форсунки поднимается и происходит впрыск топлива в цилиндр. Плунжер движется вверх, поддерживая давление впрыска топлива. Как только отсечная кромка спиральной канавки совместится с перепускным отверстием давление топлива резко падает, игла распылителя форсунки под действием возвратной пружины садится в седло. Впрыск топлива прекращается. Одновременно нагнетательный клапан под действием возвратной пружины садится в седло, объем пространства за клапаном увеличивается и происходит отсечка подачи топлива. Конусный поясок нагнетательного клапана притерт к седлу и надежно изолирует надплунжерное пространство от топливопровода высокого давления, поддерживая в нем избыточное давление топлива, что обеспечивает стабильность при малой подаче топлива. Плунжер какое-то время еще продолжает двигаться вверх, обеспечивая гарантированный впрыск топлива. Кулачок сбегает с ролика толкателя и под действием возвратной пружины плунжер начинает двигаться вниз, надплунжерное пространство заполняется топливом. Режим работы дизеля зависит от количества топлива, подаваемого в цилиндры секциями насоса за один ход плунжера. При повороте плунжеров во втулках на некоторый угол изменяется количество подаваемого топлива. На многоцилиндровых двигателях из-за применения рядного насоса реличивается длина кулачкового вала. Применение V-образных насосов позволяет уменьшить длину кулачкового вала, повысить его жесткость и реличить давление впрыска до 70 МПа. 7.5. Форсунки Форсунка служит для подачи топлива в камеру сгорания под большим давлением в мелко распыленном виде и обеспечивает четкую отсечку подачи топлива в конце впрыска. На дизелях применяют форсунки нескольких типов: открытые или закрытые, с распылителем, имеющим одно отверстие (сопло) или несколько. Закрытые форсунки могут быть штифтовые или бесштифтовые. На дизелях марок «ЯМЗ» (рис. 67, а), «КамАЗ», «ЗИЛ» (рис. 67, б) применяют закрытые бесштифтовые форсунки. Форсунка называется закрытой, так как сопла в распылителе закрыты иглой и только в момент впрыска топлива сообщаются с камерой сгорания. Для выхода топлива распылитель имеет четыре сопла диаметром 0,34 мм. Форсунка дизелей марки «ЯМЗ» состоит из корпуса, в котором имеется центральное отверстие под штангу и наклонный топливный канал; распылителя с тщательно обработанным осевым отверстием под иглу и топливных каналов. В нижней части распылителя имеются четыре сопла, кольцевая проточка и два глухих отверстия под штифты. Игла распылителя имеет цилиндрическую направляющую часть, конусные пояски в средней и ниж-
100 Раздел L Двигатель Рис. 67. Форсунки дизелей: а — ЯМЗ-236; б — КамАЗ-740; 1 — игла распылителя; 2 — медная шайба; 3 — кольцевая полость; 4 — распылитель; 5 — накидная гайка; 6 — штифт; 7 — шарик; 8 — корпус; 9 — штанга; 10 — тарелка пружины; 11 — пружина; 12 — регулировочный винт; 13 — стакан пружины; 14 — контргайка; 15 — колпак; 16 — прокладка; 17 ~ втулка; 18 — сетчатый фильтр; 19 — уплотнитель штуцера; 20 — штуцер; 21 и 23 — каналы; 22 — кольцевая проточка; 24 — латунный стакан; 25 — головка блока цилиндров; 26 — проставка; 27 — уплот- нительное кольцо; 28 — регулировочные шайбы; 29 — опорная шайба ней частях. Распылитель с иглой крепится к корпусу накидной гайкой. В верхней боковой части находится прилив с резьбовым отверстием под топливный штуцер с фильтрующей сеткой. В центральной верхней части имеется резьба под резьбовую втулку, в центральной части которой находится резьбовое отверстие под регулировочный винт с контргайкой. Нижняя часть винта является верхней опорной тарелкой под возвратную пружину иглы распылителя. На штанге в верхней части крепится нижняя опорная тарелка пружины, в нижней части запрессован шарик для плотной посадки иглы на седло. Резьбовая втулка в верхней части закрыта колпач- ковой гайкой с резьбовым отверстием под дренажный трубопровод. Топливо подводится к форсунке через штуцер с сетчатым фильтром и поступает по наклонному каналу корпуса в кольцевую проточку распылителя. Затем топливо по трем каналам проходит в кольцевую полость (сред-
Глава 7. Система питания дизеля 101 ней части распылителя), расположенную под утолщенной (с конусным пояском) частью иглы. Под действием топлива, поступающего в полость, игла поднимается, сжимая возвратную пружину. Сопла распылителя открываются, и топливо впрыскивается в камеру сгорания. После окончания впрыска давление топлива падает и под действием возвратной пружины игла плотно садится на седло в распылителе. Давление впрыска топлива регулируется регулировочным винтом с контргайкой в резьбовой втулке затяжкой возвратной пружины иглы распылителя. Топливо, просочившееся между иглой и распылителем, отводится дренажным трубопроводом в бак. Автоматическая муфта опережения впрыска топлива позволяет изменять угол опережения впрыска топлива в зависимости от частоты вращения коленчатого вала, что повышает экономичность дизеля при различных режимах работы и улучшает его пуск. Муфта устанавливается на переднем конце кулачкового вала ТНВД. Автоматическая муфта (рис. 68) состоит из следующих деталей: ведущей полумуфты с пальцами и шипами привода, ведомой полумуфты с ося- 1 4 2 15 14 5 11 13 2 4 10 15 11 б) Рис. 68. Автоматическая муфта опережения впрыска топлива: а — конструкция; б — детали; 1 — ведомая полумуфта; 2 — ось груза; 3 — уплотнительное кольцо; 4 — пружина; 5 — ведущая полумуфта; 6 — винт; 7 — втулка ведущей полумуфты; 8 и 12 — самоподжимные манжеты; 9 — гайка крепления муфты; 10 — ступица ведомой полумуфты; 7/ — шип; 13 — корпус; 14 — палец ведущей полумуфты; 75 — груз; 16 — пружинная шайба; 17 — шпонка; 18 — кулачковый вал топливного насоса; 19 — проставка
102 Раздел L Двигатель ми грузов, двух грузов, двух пружин, двух проставок и корпуса. Ведущая полумуфта надета на ступицу ведомой полумуфты и может на ней поворачиваться. При сборке муфты корпус навертывают на ведомую полумуфту. Для уплотнения соединения ведущей полумуфты с корпусом в него запрессована самоподжимная уплотняющая манжета. Два груза, шарнирно установленные на осях, имеют криволинейную поверхность, на которую через проставки опираются пальцы ведущей полумуфты. Движение от ведущей полумуфты на ведомую передается через два груза и пружины. Во время работы двигателя ведущая полумуфта пальцами через проставки нажимает на криволинейную поверхность грузов. Усилие через оси грузов передается ведомой полумуфте, а от нее кулачковому валу насоса. При увеличении частоты вращения коленчатого вала грузы, преодолевая сопротивление пружины, расходятся под действием центробежных сил. При этом грузы поворачиваются вокруг осей ведомой полумуфты и проставки скользят по криволинейной поверхности грузов. В этом случае расстояние между осями грузов и пальцами ведущей полумуфты уменьшается, пружины сжимаются и ведомая полумуфта поворачивается по ходу вращения вместе с кулачковым валом. В результате этого топливо раньше поступает в цилиндры двигателя, т. е. увеличивается угол опережения впрыска топлива. При уменьшении частоты вращения коленчатого вала грузы сходятся, пружины разжимаются и поворачивают ведомую полумуфту в противоположную сторону, что вызывает уменьшение угла опережения впрыска топлива. Автоматическая муфта изменяет угол опережения впрыска топлива на 10-14° 7.6. Регулятор частоты вращения коленчатого вала Регулятор частоты вращения коленчатого вала изменяет подачу топлива в зависимости от нагрузки двигателя, поддерживая заданную водителем частоту вращения коленчатого вала. Регулятор называется всережимным, так как он может поддерживать любую заданную водителем частоту вращения коленчатого вала и ограничивать максимальную. Ограничение максимальной частоты вращения коленчатого вала вызвано необходимостью предохранить детали дизеля от быстрого изнашивания и чрезмерных нагрузок, а ограничение малой частоты вращения — ухудшением подачи топлива и смесеобразования. Регулятор крепится к задней части корпуса ТНВД и приводится во вращение от кулачкового вала ТНВД через ускоряющие зубчатые колеса, поэтому вал регулятора вращается с большей частотой вращения, чем кулачковый вал. Это позволяет повысить чувствительность регулятора к изменению нагрузки. Регулятор (рис. 69) состоит из корпуса с крышкой, смотрового люка, зубчатого колеса привода, вала регулятора с ведомым зубчатым колесом и державкой грузов (ролики грузов упираются в подвижную муфту с шарикоподшипником и пятой), рычага управления рейкой топливного насоса, который крепится на одной оси с пятой (рычаг тягой соединен одним концом с рейкой, а другим концом посредством пальца с кулисой). Скоба
Глава 7. Система питания дизеля 103 Рис. 69. Всережимный регулятор частоты вращения коленчатого вала дизеля ЯМЗ-236М: а — устройство; б — схема работы (увеличение частоты вращения коленчатого вала); 1 и 3 — зубчатые колеса; 2 — кулачковый вал топливного насоса; 4 — вал регулятора; 5 — стакан; 6 — ось грузов; 7 — державка; 8 — вал рычагов; 9 — рычаг пружины; 10 — рейка топливного насоса; 11 — тяга; 12 — стартовая пружина рычага рейки; 13 — болт ограничителя максимальной частоты вращения коленчатого вала; 14 — рычаг управления регулятором; 15 — болт регулировки минимальной частоты вращения коленчатого вала на режиме холостого хода; 16 — крышка смотрового люка; 17 — ось двуплечего рычага; 18 — двуплечий рычаг; 19 — пружина регулятора; 20, 22 и 29 — регулировочные винты; 21 — регулировочный болт; 23 — упорная пружина; 24 — серьга; 25 — корректор; 26 — рычаг; 27 — рычаг управления рейкой; 28 — скоба; 30 — палец; 31 — кулиса; 32 — пята; 33 — пробка отверстия для слива масла из регулятора; 34 — подвижная муфта; 35 — груз; 36 — резиновые сухари; / — скоба кулисы в положении «Работа»; // — скоба кулисы в положении «Стоп» управления кулисой может занимать два положения: «Работа» и «Стоп». В состав регулятора также входят силовой и двуплечий рычаги управления регулятором, болты ограничения максимальной и минимальной частоты вращения коленчатого вала. При неработающем двигателе скоба управления кулисой находится в положении «Стоп». После пуска двигателя грузы под действием центробежных сил расходятся и перемещают подвижную муфту от себя. Силовой и двуплечий рычаги поворачиваются против часовой стрелки, преодолевая усилие силовой пружины, одновременно рычаг управления рейкой перемещает рейку в сторону уменьшения подачи топлива. Перемещение рычажной системы продолжается до тех пор, пока центробежные силы грузов не уравновесятся силовой пружиной регулятора. Необходимую частоту вращения коленчатого вала устанавливает водитель, нажимая на педаль подачи топлива. Установившаяся частота вращения коленчатого вала автоматически поддерживается регулятором следующим образом. При уменьшении нагрузки на двигатель частота вращения коленчатого вала возрастает, так как в цилиндры поступает то же количе-
104 Раздел L Двигатель ство топлива. Грузы регулятора, расходясь на некоторый угол, перемещают рычажную систему в сторону, соответствующую уменьшению подачи топлива и восстанавливают величину частоты вращения коленчатого вала до ±30 мин"1 При увеличении нагрузки на двигатель частота вращения коленчатого вала снижается. Центробежные силы грузов уменьшаются, грузы сходятся, рычажная система под действием силовой пружины регулятора перемещает рейку топливного насоса в сторону увеличения подачи топлива до восстановления заданного скоростного режима (перемещению рейки в сторону увеличения подачи топлива также способствует и стартовая пружина рычага рейки). Топливопроводы. В топливной системе дизеля используются топливопроводы низкого и высокого давления. Топливопроводы низкого давления предназначены для подвода топлива из бака через фильтры к насосу высокого давления и отвода излишков топлива в бак. Изготовляются они из латунных или стальных трубок и присоединяются к приборам пустотелыми болтами, контактные поверхности уплотняются медными шайбами толщиной 1,5 мм. Топливопроводы высокого давления соединяют топливный насос высокого давления с форсунками. Все они имеют одинаковую длину и изготовляются из стальных трубок (внешний диаметр 7 мм, внутренний 2 мм). Их концы, полученные высадкой в форме конуса, привернуты накидными гайками с шайбами к конусным гнездам штуцеров топливного насоса высокого давления и форсунок. Во избежание поломок от вибрации топливопроводы закреплены специальными скобами и кронштейнами. 7.7. Система подачи и очистки воздуха Воздухоочиститель. На двигателях марки «КамАЗ» (рис. 70) установлен двухступенчатый воздухоочиститель с автоматическим отсосом пыли и сменным фильтрующим элементом. Воздухоочиститель состоит из воздушной трубы, корпуса.воздухоочистителя с фильтрующим элементом, выходной трубы, патрубка отсоса пыли. В качестве фильтрующего элемента используется гофрированный картон. При работе двигателя воздух через сетку в колпаке проходит по трубам в воздухоочиститель. По входному патрубку корпуса воздух попадает в первую ступень очистки с инерционной решеткой и резко изменяет направление. Крупные частицы отсасываются отработавшими газами и выводятся в окружающую среду. Для этого в выпускной трубе двигателя установлен эжектор. Воздух проходит через микропоры картона второй ступени и очищенный по выходной трубе поступает во впускной трубопровод. Система выпуска отработавших газов автомобилей марки «КамАЗ» состоит из выпускных трубопроводов, приемных труб, которые соединены в тройнике, гибкого металлического рукава, по которому газы поступают в глушитель. Глушитель состоит из корпуса с днищами. Внутри имеются две
Глава 7, Система питания дизеля 105 Рис. 70. Система подачи и очистки воздуха дизеля КамАЗ-740: а — система подачи воздуха; 6 — воздухоочиститель; 1 — колпак; 2 — труба воздухозаборника; 3 — индикатор; 4 — левый впускной трубопровод; 5 — входная труба; 6 — воздухоочиститель; 7 — патрубок отсоса пыли; 8 — выходная труба; 9 — борт кузова; 10 — кабина; 11 — корпус воздухоочистителя; 12 — фильтрующий элемент; 13 — входной патрубок; 14 — уплотнительное кольцо; 15 — защелка крепления крышки; 16—- держатель фильтрующего элемента; 17 — гайка крепления фильтрующего элемента; 18 — крышка; 19 — выходной патрубок перегородки, которые образуют три резонаторные камеры, где газы расширяются, их давление и скорость уменьшаются и далее они выводятся в окружающую среду. 7.8. Экологичность автомобильных двигателей Тепловые двигатели выбрасывают в окружающую среду большое количество вредных веществ. Источниками вредных выбросов двигателя являются отработавшие газы, картерные газы, испарения из системы питания и утечки топлива, масла и другие эксплуатационные жидкости. Все выбрасываемые двигателем вредные вещества делятся на три группы: • экологически нейтральные, не нарушающие физических свойств окружающей среды, например азот; • неядовитые, но экологически активные, не оказывающие непосредственного негативного воздействия, но способствующие образованию фотохимического смога, «парникового эффекта» и др.
106 Раздел L Двигатель • ядовитые (токсичные и канцерогенные) вещества, оказывающие прямое негативное влияние на организм человека и окружающую среду. Это оксиды углерода и азота, углеводороды, в том числе ароматического ряда, различные кислоты, соединения свинца, серы и дисперсные частицы. Дизели работают на более обедненных, чем бензиновые двигатели, горючих смесях. На частичных нагрузках коэффициент избытка воздуха у них примерно в три раза, а на полных в полтора раза превышает теоретически необходимый. Естественно, это уменьшает содержание оксида углерода и оксидов азота в отработавших газах. Для улучшения экологичности на дизелях устанавливают нейтрализаторы и сажевые фильтры. Нейтрализаторы дожигают до 40 % тяжелых углеводородов, адсорбированных на частицах сажи. В настоящее время законодательными актами большинства стран введены нормы выбросов вредных веществ с отработавшими газами.
Раздел II ТРАНСМИССИЯ Устройство Трансмиссия (силовая передача) автомобиля (рис. 71) служит для передачи крутящего момента от двигателя к ведущим колесам и изменения величины и направления действия этого момента. Требования, предъявляемые к трансмиссии: • обеспечение прямого и обратного направлений движения; • обеспечение соответствия эксплуатационных режимов минимальному расходу топлива и эмиссии вредных веществ в отработавших газах. Автомобили в зависимости от способа преобразования крутящего момента могут иметь механическую, гидромеханическую или электромеханическую трансмиссию. По способу изменения передаточного числа автомобили могут иметь ступенчатую, бесступенчатую или комбинированную трансмиссию. В настоящее время наибольшее распространение получили автомобили с двумя или тремя мостами с механическими трансмиссиями. При наличии двух мостов ведущими могут быть оба или один из них, при наличии трех мостов — ведущими могут быть все три или два задних. Число ведущих мостов характеризуется колесной формулой по общему числу колес и числу ведущих, например 4 х 2, 4 х 4, 6 х 4, 6 х 6 и т. д. Первая цифра обозначает общее число колес, вторая — число ведущих колес. Механическая трансмиссия автомобиля с одним ведущим задним мостом состоит из сцепления, коробки передач, карданной передачи и заднего ведущего моста, в который входят главная передача, дифференциал и полуоси. У автомобилей с колесной формулой 4x4 в трансмиссию также входит раздаточная и дополнительная коробки, карданная передача к переднему ведущему мосту, передний ведущий мост и межосевой дифференциал. У автомобилей с гидромеханической трансмиссией крутящий момент, передаваемый от двигателя к ведущим колесам, преобразовывается гидравлическим и механическим способами, а с электромеханической трансмиссией — механическим и электрическим способами. Гидравлическая и электрическая части этих трансмиссий позволяют осуществлять бесступенчатое изменение передаточного числа.
Рис. 71. Схемы трансмиссий автомобилей: а — с одним задним ведущим мостом; б — с передним и задним ведущими мостами; в — с двумя задними ведущими мостами; г и д — с тремя ведущими мостами; е — с четырьмя ведущими мостами; 1 — сцепление; 2— коробка передач; Зи 6 — карданные валы; 4 и 8 — задние ведущие мосты; 5 — передний ведущий мост; 7 — раздаточная коробка
Глава L Сцепление 109 Глава 1 Сцепление Сцепление служит для кратковременного разъединения двигателя и трансмиссии и последующего их плавного соединения, что необходимо для включения передачи при трогании с места и переключении передач при движении автомобиля. Требования, предъявляемые к сцеплению: • постоянство нажимного усилия независимо от износа деталей сцепления; • двойной запас усилия сцепления. По характеру связи между ведущей и ведомой частями различают: фрикционные, гидравлические и электромагнитные сцепления. У фрикционного сцепления крутящий момент передается с ведущих частей на ведомые силами трения, у гидравлических сцеплений — силами потока жидкости, движущимися между ведущими и ведомыми частями, у электромагнитных сцеплений — магнитным полем. На отечественных автомобилях, как правило, установлены постоянно замкнутые сухие фрикционные дисковые сцепления. 1.1. Сцепление с периферийным расположением пружин Сцепление (рис. 72) состоит из следующих элементов: • кожуха сцепления, ведущего (нажимного) диска; • тонкого ведомого диска с фрикционными накладками и гасителем крутильных колебаний; 18 17 16 15 24 2317 22 21 а) 6) Рис. 72. Сцепление: a — однодисковое; б — двухдисковое; / — коленчатый вал двигателя; 2 — маховик; 3 — ведомый диск с фрикционными накладками; 4 — нажимной диск; 5 — картер сцепления; 6 — кожух сцепления; 7 — оттяжной палец; 8 — опора оттяжного рычага; 9 — оттяжной рычаг; 10 — муфта выключения сцепления; 11 — ведущий вал коробки передач; 12 — педаль; 13 — тяга; 14 — вилка выключения; 15 — оттяжная пружина; 16 — нажимная пружина; 17 — направляющий палец; 18 — роликоподшипник; 19 — отжимная пружина промежуточного диска; 20 — регулировочный болт промежуточного диска; 21 — нажимной ведущий диск; 22 — задний ведомый диск; 23 — промежуточный ведущий диск; 24 — передний ведомый диск
по Раздел II. Трансмиссия • нажимного механизма — нажимного (ведущего) диска, периферийно расположенных цилиндрических пружин или одной центральной диафрагменной пружины; • механизма включения сцепления — оттяжных пальцев, рычагов выключения (четыре или три), муфты выключения с упорным шариковым подшипником (графитовым подшипником); • привода выключения сцепления — системы тяг и рычагов, вилки выключения (гидравлического привода выключения сцепления); • усилителя выключения сцепления — пневматического или пневмо- гидравлического (для грузовых автомобилей). По числу ведомых дисков фрикционные сцепления делятся на одно- и двухдисковые. Двухдисковые сцепления устанавливаются на грузовых автомобилях для передачи большого крутящего момента. При включенном сцеплении крутящий момент передается от коленчатого вала на маховик, затем на кожух сцепления и через пластинчатые пружины (рис. 73) на ведущий (нажимной) диск. На автомобиле ГАЗ-53 (рис. 74) имеются квадратные окна в кожухе сцепления, куда входят приливы крепления рычагов выключения сцепления, на автомобилях марки «КамАЗ» (рис. 75) и «МАЗ» (рис. 76) на маховике выполнены пазы, в которые входят приливы на ведущих дисках. От маховика и ведущего нажимно- Рис. 73. Однодисковое сцепление автомобиля ЗИЛ-4314Л0: а — конструкция; б — втулка с пружинной пластиной; 1 — нажимной диск; 2 — пружинные пластины; 3 — картер сцепления; 4 — нажимная пружина; 5 — кожух сцепления; 6 — упорный подшипник; 7 — вилка выключения сцепления; 8 — оттяжной рычаг; 9 — гайка; 10 — вилка оттяжного рычага; 11 и 12 — оси; 13 — игольчатый подшипник; 14 — ведомый диск; 75 — ступица; 16 — пружина гасителя крутильных колебаний; 17— соединительный болт; 18— втулка, соединяющая пластину с нажимным диском
Глава 1. Сцепление 111 Рис. 74. Сцепление и его привод автомобиля ГАЗ-53А (а) и привод сцепления автомобиля ГАЗ-66-11 (б): / — маховик; 2 — картер сцепления; 3 — ведомый диск; 4 — нажимной диск; 5, 6 и 13— подшипники; 7— масленка; 8 — регулировочная гайка; 9 — опорная вилка; 10— кожух сцепления; 11 — оттяжной рычаг; 12 — муфта выключения сцепления; 14 — шаровой палец; 15 — нажимная пружина; 16 — регулировочная тяга; 17 — рычаг привода; 18 — кронштейн педалей сцепления и тормозного механизма; 19 — пружина педали сцепления; 20 — валик педалей сцепления и тормозного механизма; 21 — педаль сцепления; 22 — вилка выключения сцепления; 23 — пружина вилки выключения сцепления; 24 — упорный палец; 25 — ступица ведомого диска; 26 — пружина гасителя крутильных колебаний; 27 — передний кронштейн; 28 — пробка; 29 — главный цилиндр; 30 — компенсационное отверстие; 31 — перепускное отверстие; 32 — защитный колпак; 33 — задний кронштейн; 34 — эксцентриковый болт; 35 — промежуточный рычаг; 36 — тяга; 37 и 47 — толкатели; 38 и 45 — поршни; 39 — манжета; 40 — стяжная пружина; 41 и 42— трубопроводы; 43 и 44— гибкие шланги; 46 — рабочий цилиндр
112 Раздел II. Трансмиссия Рис. 75. Сцепление автомобиля марки «КамАЗ»: / — ведущий вал; 2 ~ маховик; 3 и 5 — ведомые диски; 4 — механизм автоматической установки среднего ведущего диска; 6 — средний ведущий диск; 7 — нажимной диск; 8 — вилка оттяжного рычага; 9 — оттяжной рычаг; 10 — пружина упорного кольца; 11 — упорный подшипник; 12 — муфта выключения сцепления; 13 — вилка выключения сцепления; 14 — упорное кольцо; 15 — валик вилки; 16 — нажимная пружина; 77— кожух; 18 — теплоизоляционная шайба; 19 — болт крепления кожуха; 20 — картер го диска, благодаря силам трения, крутящий момент передается зажатому между ними ведомому диску, ступица которого имеет шлицевое соединение с ведущим валом коробки передач. Для выключения сцепления нажимают на педаль, которая через систему тяг и рычагов передает усилие на вилку, муфту, рычаги и пальцы отводят назад ведущий нажимной диск. При этом пружины сжимаются и освобождают ведомый диск, по обеим сторонам которого образуются зазоры, В двухдисковом сцеплении для обеспечения необходимых зазоров между ведущими и ведомыми дисками в выключенном состоянии имеются отжимные пружины и регулировочный болт промежуточного диска. При плавном отпускании педали нажимные пружины возвращают все детали механизма выключения в исходное положение, ведомый диск прижимается к ведущему (нажимному) диску и маховику.
Глава L Сцепление 113 Рис. 76. Сцепление автомобиля МАЗ-5335: 1 — картер маховика; 2 — маховик; 3 — отжимная пружина; 4 — шток; 5 — разрезное кольцо; 6 — упорная планка; 7 — оттяжной рычаг; 8 — вилка оттяжного рычага; 9 — регулировочная гайка; 10 — опорная пластина; 11 — муфта выключения сцепления с подшипником; 12 — шланг подачи смазочного материала к муфте выключения сцепления; 13 — вилка выключения сцепления; 14 — упорное кольцо оттяжных рычагов; 15 — валик вилки выключения сцепления; 16 — рычаг; 17 — кожух сцепления; 18 — нажимная пружина; 19 — теплоизоляционная шайба; 20 — нажимной диск; 21 — задний ведомый диск; 22 — средний ведущий диск; 23 — передний ведомый диск 1.2. Сцепления с диафрагменной пружиной Сцепления с периферийным расположением пружин имеют существенный недостаток — чувствительность к центробежным силам, которые пропорциональны квадрату частоты вращения сцепления, в быстроходных двигателях они значительны и вызывают деформацию («выпучивание») пружин, от чего пружины удлиняются, уменьшая осевое усилие и, следовательно, коэффициент запаса сцепления. Значительно лучше противостоят центробежной силе диафрагменные пружины (рис. 77), представляющие собой в свободном состоянии усеченный конус с радиальными прорезями, идущими от внутреннего края. Лепестки пружины выполняют функции рьлагов выключения сцепления. При нажатии подшипника муфты выключения сцепления на их концы они де-
114 Раздел II. Трансмиссия Рис. 77. Сцепление: а — в сборе; б — детали; 1 — картер сцепления; 2 — опорная втулка вала вилки выключения сцепления; 3 — вилка выключения сцепления; 4 — подшипник выключения сцепления; 5 — ведомый диск; 6 — первичный вал коробки передач; 7 — маховик; 8 — нажимной диск; 9 — болт крепления сцепления к маховику; 10 — кожух сцепления; 11 — нажимная пружина; 12 — подшипник первичного вала; 13 — втулка вала вилки выключения сцепления; 14 — оттяжная пружина рычага вилки выключения сцепления; 15 — рычаг вилки выключения сцепления; 16 — ступица ведомого диска; 17 — фрикционные накладки; 18 — пружина демпфера; 19 — пластина, соединяющая кожух сцепления с нажимным диском; 20 — опорные кольца нажимной пружины; 21 — муфта подшипника выключения сцепления; 22 — соединительная пружина вилки и муфты подшипника выключения сцепления формируют пружину, перемещая назад ее наружный край. Для того чтобы нажимной диск двигался вслед за пружиной, на нем закреплены крюкооб- разные захваты.
Глава L Сцепление 115 Применение диафрагменной пружины (нелинейная характеристика) дает возможность затрачивать меньше усилия для выключения, чем спиральные цилиндрические (линейная характеристика) пружины. При износе деталей сцепления нажимное усилие цилиндрических пружин заметно падает, в то время как у конструкции с диафрагменной пружиной оно может даже несколько возрасти, обеспечивая надежную передачу крутящего момента. Кроме этого, сцепление с диафрагменной пружиной проще, имеет в семь раз меньше деталей и меньшие габаритные размеры. Для обеспечения плавности включения сцепления ведомые диски делают разрезными или пластинчатыми. К пластинам, изогнутым в разные стороны, с обеих сторон прикрепляют фрикционные накладки. Это обеспечивает в свободном состоянии зазор между накладками (1—2 мм). Уменьшение зазора между накладками в процессе включения сцепления обуславливает плавность соприкосновения трущихся поверхностей и возрастание силы трения. Для предотвращения передачи угловых колебаний от двигателя на валы трансмиссии в конструкции сцепления предусмотрен гаситель крутильных колебаний (демпфер) (рис. 78). Пружины демпфера обеспечивают упругую связь ведомого диска сцепления с его ступицей. Рис. 78. Гаситель крутильных колебаний (а) и его нерабочее {б) и рабочее (в) положения: 1 и 9 — накладки диска; 2 — пластинчатая пружина; 3 — ведомый диск; 4 — фрикционные шайбы; 5 — ступица ведомого диска; 6 — регулировочная шайба; 7 — пружина; 8 — пластина гасителя При отсутствии передачи крутящего момента вырезы фланца ступицы и ведомого диска, в которых расположены демпферные цилиндрические пружины, совпадают. Передача крутящего момента от ведомого диска к его ступице осуществляется через демпферные пружины. При этом ведомый диск поворачивается на некоторый угол относительно фланца ступицы и между ними возникает трение. Таким образом, энергия крутильных колебаний превращается в тепловую. Предельное угловое смещение дисков ограничено размером вырезов во фланце ступицы.
116 Раздел IL Трансмиссия Гидравлический привод. Для обеспечения управления сцеплением и повышения плавности его включения применяют гидравлический привод. Гидравлический привод сцепления автомобилей марки «КамАЗ» (рис. 79) состоит из педали сцепления, главного цилиндра, пневмогидроусилителя (ПГУ), системы трубопроводов и шлангов. При включенном сцеплении между штоком поршня и поршнем главного цилиндра имеется зазор, и жидкость через отверстие в поршне свободно перетекает из верхней полости в рабочую полость главного цилиндра. При нажатии на педаль сцепления усилие через шток передается на поршень главного цилиндра, который, сжимая пружину, вытесняет жидкость через отверстие в пробке и соединительный трубопровод в корпус пневмогидроусилителя. При отпускании педали под действием давления жидкости в системе и возвратной пружины поршень возвращается в исходное положение, толкатель отрывается от поршня, открывая отверстие, и полости соединяются между собой. 21 2019 18 17 16 Рис. 79. Гидравлический привод сцепления автомобилей марки «КамАЗ»: / — кронштейн педали; 2 — рычаг толкателя поршня; 3 — оттяжная пружина; 4 — педаль сцепления; 5 — главный цилиндр; 6 — ограничитель хода педали; 7 — защитный чехол; 8 — толкатель поршня; 9 — поршень; 10 — манжета поршня; 11 — корпус; 12 — пружина; 13 — уплотнительное кольцо; 14— пробка; 15 — трубка подвода воздуха; 16 — рычаг выключения сцепления; /7— сферическая гайка; 18 — контргайка; 19 — толкатель поршня пневмогидроусилителя; 20 — возвратная пружина; 21 — пневмогидроусилитель
Глава L Сцепление 117 1.3. Пневмогидроусилитель привода сцепления Пневмогидроусилитель привода сцепления (рис. 80) служит для уменьшения усилия, прикладываемого к педали сцепления водителем. Он состоит из гидравлического цилиндра с поршнем, штоком и пружиной; пневматического цилиндра с поршнем, штоком (общий с поршнем гидроцилиндра) и возвратной пружиной; следящего механизма, состоящего из следящего поршня с манжетой, диафрагмы (зажата между двумя частями корпуса), в центре которой крепится седло выпускного клапана, возвратной пружины диафрагмы; выпускного и впускного клапанов (крепятся на одном штоке) с возвратной пружиной; седла впускного клапана; отверстия, закрытого уплотнителем от попадания грязи, соединяющего над- поршневую полость пневмопилиндра с окружающей средой. При включенном сцеплении общий шток прижат к поршням гидроцилиндра и пневмоцилиндра. Поршень следящего механизма занимает положение, соответствующее открытому выпускному клапану, соединяющему Рис. 80. Пневмогидроусилитель привода сцепления автомобилей марки «КамАЗ»: 1 — сферическая гайка; 2 — толкатель поршня выключения сцепления; 3 — защитный чехол; 4 — корпус комбинированного уплотнения; 5 — манжета следящего поршня; 6 — следящий поршень; 7— корпус следящего поршня; 8 — перепускной клапан; 9 — уплотнитель выпускного отверстия; 10 и 18 — крышки; // — мембрана следящего устройства; 72 — седло выпускного клапана; 13 ~ уплотнительное кольцо; 14 — пружина мембраны; 15 — пружина впускного и выпускного клапанов; 16 — седло впускного клапана; 17 — впускной клапан; 19 — выпускной клапан; 20 — тарелка пружины; 21 — пневматический поршень; 22 — пробка; 23 — манжета поршня; 24 — передний корпус; 25 — возвратная пружина пневматического поршня; 26 — толкатель поршня выключения сцепления; 27 — манжета уплотнителя; 28 и 30 — втулки; 29 — пружина поршня выключения сцепления; 31 — манжета поршня; 32 — гидравлический поршень выключения сцепления; 33 — задний корпус
118 Раздел IL Трансмиссия надпоршневое пространство пневмоцилиндра с окружающей средой и закрытому впускному клапану. При выключении сцепления рабочая жидкость из главного цилиндра поступает в гидроцилиндр пневмогидроусилителя, и одновременно по каналу к поршню следящего механизма. Давление жидкости перемещает поршень в сторону седла выпускного клапана. Диафрагма, прогибаясь, перемещает седло к выпускному клапану, который садится в седло, изолируя надпоршневое пространство пневмоцилиндра от окружающей среды. Далее усилие от выпускного клапана через шток передается на впускной клапан, который открывается, и сжатый воздух по каналу поступает в надпоршневое пространство пневмоцилиндра. Поршень пневмоцилиндра, перемещаясь, воздействует на шток поршня гидроцилиндра. Поршень передает усилие на толкатель, который воздействует на рычаг вилки выключения сцепления. Часть сжатого воздуха поступает в полость диафрагмы. Таким образом, следящий поршень находится под действием двух противоположно направленных сил: действие рабочей жидкости с одной стороны и сжатого воздуха с другой. Поршни следящего механизма и пневмоцилиндра подобраны так, чтобы обеспечить необходимое снижение усилия на педаль сцепления. При отпускании педали сцепления давление рабочей жидкости падает, и все детали под действием возвратных пружин возвращаются в исходное положение, надпоршневое пространство пневмоцилиндра через открытый выпускной клапан сообщается с окружающей средой. При выходе из строя пневмосистемы перемещение поршня гидроцилиндра осуществляется только под давлением рабочей жидкости. Глава 2 Коробка передач Коробка передач предназначена для изменения силы тяги на ведущих колесах, скорости движения, изменения направления движения автомобиля. Кроме того, коробка передач позволяет на длительное время отсоединять двигатель от трансмиссии при работе двигателя на остановившемся автомобиле или при движении накатом. Требования, предъявляемые к коробке передач: • обеспечение высоких тягово-скоростных и топливно-экономических качеств автомобиля; • легкость и удобство управления; • высокий КПД; • низкий уровень шума при работе; • надежность; • малые габаритные размеры. В зависимости от характера изменения передаточного числа различают коробки передач ступенчатые, бесступенчатые и комбинированные. По ха-
Глава 2. Коробка передач 119 рактеру связи между ведущим и ведомым валами коробки передач делятся на механические, гидравлические, электрические и комбинированные. По способу управления — на автоматические и неавтоматические. Ступенча- Рис. 81. Четырехступенчатая коробка передач: / — подшипник выключения сцепления; 2 — направляющая втулка муфты подшипника выключения сцепления; 3 — ведущее зубчатое колесо привода спидометра; 4 — картер сцепления; 5 — полуосевое зубчатое колесо; 6 — сателлит; 7 — ось сателлитов; 8 — коробка дифференциала; 9 — регулировочная прокладка; 10, 12 — синхронизаторы; 11 — упорные полукольца; 13 — игольчатый подшипник зубчатого колеса; 14 — вторичный вал; 15 — задняя крышка картера коробки передач; 16 — картер коробки передач; /7— первичный вал
120 Раздел IL Трансмиссия тые коробки передач различают по числу передач переднего хода, по числу валов — на двух- и трехвальные. В основном на автомобилях применяют ступенчатые коробки передач — двух- или трехвальные. Переключение передач осуществляется передвижением зубчатых колес или передвижением муфт синхронизаторов. На автомобилях с классической компоновкой обычно применяют трехвальные коробки передач. Особенностью таких автомобилей является то, что почти всегда можно выделить передачу, на которой они проходят большую часть пути. Поэтому основным преимуществом трехвальных коробок передач является наличие в них так называемой «прямой» передачи, которая получается при непосредственном соединении ведущего и ведомого валов. Другим преимуществом трехвальных коробок передач является относительная легкость получения большого передаточного числа на низшей (первой) передаче при малом межосевом расстоянии. Это объясняется тем, что передаточное число всех передач, кроме «прямой», у таких коробок передач образуется двумя последовательно работающими парами зубчатых колес, в отличие от одной пары в двухвальных коробках передач. Двухвальные коробки передач (рис. 81) проще по конструкции, дешевле и имеют более высокий КПД (только на «прямой» передаче трехвальная коробка передач имеет более высокий КПД, чем двухвальная). Преимуществом двухвальных коробок передач является простота вывода крутящего момента на любую сторону (переднюю или заднюю или обе сразу), что в некоторых случаях, например при заднемоторных, переднеприводных и полноприводных конструкциях автомобилей, предоставляет большие компоновочные возможности. 2.1. Ступенчатые коробки передач В трехвальной коробке передач (рис. 82 и 83) имеются ведущий (первичный), ведомый (вторичный) и промежуточный валы, установленные в картере на подшипниках, причем первичный и вторичный валы соосны. На первичном валу выполнено за одно целое с ним зубчатое колесо постоянного зацепления с зубчатым колесом промежуточного вала. Другие зубчатые колеса жестко закреплены на промежуточном валу. На ведомом валу установлены имеющие возможность перемещаться вдоль вала зубчатые колеса передач. Отношение числа зубьев ведомого зубчатого колеса к числу зубьев ведущего зубчатого колеса, обратное отношению их частот вращения, называется передаточным числом. Когда какое-либо зубчатое колесо ведомого вала входит в зацепление с одним из зубчатых колес промежуточного вала, крутящий момент от двигателя через ведущий, промежуточный и ведомый валы коробки передач передается карданной передаче и далее на ведущие колеса автомобиля. Для включения первой передачи зубчатое колесо ведомого вала первой передачи передвигается по шлицевому валу в зацепление с зубчатым колесом первой передачи промежуточного вала. Общее передаточное число первой
121
122 Раздел IL Трансмиссия Рис. 83. Пятиступенчатая коробка передач автомобиля МАЗ-5335: 1 — ведущий вал; 2 — крышка подшипника ведущего вала; 3 — зубчатое колесо ведущего вала; 4 — синхронизатор четвертой и пятой передач; 5 — рычаг переключения передач; 6 — вал рычага переключения; 7 — шарик фиксатора с пружиной; 8 — зубчатое колесо пятой передачи ведомого вала; 9 — зубчатое колесо третьей передачи ведомого вала; 10 — синхронизатор второй и третьей передач; 11 — зубчатое колесо второй передачи ведомого вала; 12 — зубчатое колесо первой передачи и передачи заднего хода ведомого вала; 13 — верхняя крышка коробки передач со штоком и вилками; 14 — ведомый вал; 75 — червячное колесо привода спидометра; 16 — фланец крепления карданного вала к коробке передач; 17 — промежуточный вал с зубчатым венцом первой передачи и передачи заднего хода; 18 — картер коробки передач; 19 — зубчатое колесо второй передачи промежуточного вала; 20 — заборник масляного насоса с магнитом; 21 — зубчатое колесо третьей передачи; 22 — зубчатое колесо пятой передачи промежуточного вала; 23 — зубчатое колесо для отбора мощности; 24 — зубчатое колесо привода промежуточного вала; 25 — масляный насос; 26 — ось блока зубчатых колес передачи заднего хода; 27 — блок зубчатых колес передачи заднего хода передачи определяется как произведение передаточных чисел отдельных пар зубчатых колес: где Z\ — зубчатое колесо постоянного зацепления промежуточного вала; z2 _ зубчатое колесо постоянного зацепления ведущего вала; z3 — зубчатое колесо первой передачи ведомого вала; ^ — зубчатое колесо первой передачи промежуточного вала.
Глава 2. Коробка передач 123 При включении прямой передачи ведущий и ведомый валы соединяются непосредственно через зубчатое колесо постоянного зацепления ведущего вала и зубчатое колесо прямой передачи ведомого вала. Переключение передач выполняют при выключенном сцеплении, вводя подвижные зубчатые колеса (каретки) ведомого вала в зацепление с неподвижными на валу зубчатыми колесами промежуточного вала. Это зацепление сопровождается ударами торцов зубьев и приводит к их повышенному износу. Поэтому на автомобилях применяют коробки передач с постоянным зацеплением зубчатых колес и включением передач передвижением кареток (муфт) синхронизаторов. Для включения передачи заднего хода необходимо ввести в зацепление блок зубчатых колес заднего хода с зубчатыми колесами промежуточного и ведомого валов одновременно, при этом один зубчатый венец блока зубчатых колес входит в зацепление с зубчатым колесом промежуточного вала, другой с зубчатым колесом ведомого вала коробки передач. 2.2. Многоступенчатые коробки передач На автомобили с двигателями небольшой мощности для обеспечения высоких тягово-скоростных и топливно-экономических характеристик устанавливаются многоступенчатые коробки передач (более шести передач), которые выполняются по обычной схеме и имеют увеличенные осевые размеры, а следовательно, длинные нежесткие валы. Увеличение числа передач достигается усложнением конструкции коробки передач или применением дополнительных коробок передач, которые обычно выполняются двухступенчатыми, вследствие чего удваивается число передач основной коробки. При этом происходит разбиение всех передаточных чисел на два ряда в зависимости от того, какая передача включена в дополнительной коробке передач. Разбиение передач на ряды можно делать двумя способами. В первом случае включение в дополнительной коробке передач не равного единице передаточного числа дает передачу, делящую интервал между передаточными числами соседних передач основной коробки передач таким образом, что все десять передаточных чисел примерно подчиняются закону геометрической прогрессии. Такие дополнительные коробки передач называются делителями. Во втором случае передаточное число первой передачи дополнительной коробки передач превышает передаточное число первой передачи основной коробки передач. Такие дополнительные коробки передач называются демультипликаторами. Дополнительные коробки передач могут располагаться перед основной коробкой передач или позади нее. Удвоение числа передач можно достичь и при выполнении делителя в общем с коробкой передач картере. Коробка передач автомобилей марки «КамАЗ» (рис. 84), автомобилей тягачей, работающих с прицепами, состоит из основной пятиступенчатой
124 Раздел IL Трансмиссия 24 23 22 2120 19 1817 1116 15 Рис. 84. Коробка передач автомобилей марки «КамАЗ»: а — общий вид; б — схема пневмопривода делителя; 1 — ведущий вал делителя; 2 — зубчатое колесо ведущего вала делителя; 3 — ведущий вал коробки передач; 4 — синхронизатор делителя; 5 — синхронизатор четвертой и пятой передач; 6 — зубчатое колесо четвертой передачи ведомого вала; 7 — зубчатое колесо третьей передачи ведомого вала; 8 — синхронизатор второй и третьей передач; 9 ~ зубчатое колесо второй передачи ведомого вала; 10 — зубчатое колесо передачи заднего хода ведомого вала; 11 — блок зубчатых колес передачи заднего хода; 12 — муфта включения переднего и заднего хода и первой передачи; 13 — зубчатое колесо первой передачи ведомого вала; 14 — ведомый вал; 15 — зубчатый венец первой передачи и промежуточного вала; 16 - картер коробки; 17 — зубчатый венец промежуточного вала передачи заднего хода; 18 — зубчатый венец второй передачи; 19 — зубчатое колесо третьей передачи промежуточного вала; 20 — зубчатое колесо четвертой передачи промежуточного вала; 21 — промежуточный вал коробки передач; 22 — зубчатое колесо привода промежуточного вала коробки передач; 23 - зубчатое колесо привода промежуточного вала делителя; 24 — картер делителя; 25 — промежуточный вал делителя; 26 ~ переключатель крана управления; 27 — кран управления; 28 - редукционный клапан; 29 — пневмоцилиндр; 30 — воздухораспределитель; 31 — клапан включения делителя; 32 — упор штока клапана; А — блок зубчатых колес передач заднего хода; Б и В — полости; / и II — высшая и низшая передачи в делителе коробки передач и дополнительной коробки передач (делителя), удваивающей число передач основной коробки передач. Делитель состоит из ведущего вала, промежуточного вала, зубчатого колеса ведущего вала, зубчатого колеса промежуточного вала, находящихся в постоянном зацеплении, и синхронизатора делителя. Коробка передач состоит из ведущего вала с зубчатым колесом постоянного зацепления и зубчатым венцом включения пятой передачи; ведомо-
Глава 2. Коробка передан 125 го вала с зубчатыми колесами четвертой, третьей, второй и первой передач (зубчатые колеса четвертой, третьей, второй и первой передач свободно сидят на валу и находятся в постоянном зацеплении с соответствующими зубчатыми колесами, жестко сидящими на промежуточном валу); промежуточного вала коробки передач, соединенного шлицевой частью с промежуточным валом делителя; блока зубчатых колес заднего хода, свободно сидящего на оси; двух синхронизаторов переключения передач (второй и третьей, четвертой и пятой), находящихся в зацеплении шлицевой частью с ведомым валом коробки передач; механизма управления. Делитель может обеспечивать подачу крутящего момента двумя путями: • синхронизатор делителя соединяет ведущие валы делителя и коробки передач, крутящий момент передается через зубчатое колесо постоянного зацепления коробки передач и далее на промежуточный вал коробки передач для включения первой, второй, третьей, четвертой передач, пятая «прямая»; • синхронизатор делителя соединяет ведущий вал делителя с зубчатым колесом ведущего вала делителя, крутящий момент передается с зубчатого колеса ведущего вала делителя на зубчатое колесо промежуточного вала делителя и далее на промежуточный вал коробки передач для включения повышающих передач (первой, второй, третьей, четвертой, пятой передач). 2.3. Синхронизаторы Для уменьшения изнашивания зубчатых колес и снижения уровня шума при работе, возникающего вследствие удара зубьев при переключении передач, используются синхронизаторы. Синхронизатор (рис. 85—87) включает в себя три элемента: • выравнивающий угловые скорости (конусные кольца); • блокирующий включение (блокирующие пальцы); • включающий передачи (зубчатая муфта). Синхронизатор коробки передач автомобиля ЗИЛ-4314.10 представляет собой передвижную муфту с диском, на который воздействует вилка переключения, и с зубчатыми венцами включения передач. Муфта установлена на шлицах ведомого вала. Диск муфты имеет по три отверстия для фиксирующих пальцев, соединяющих его с двумя сблокированными конусными кольцами, и для блокирующих пальцев, жестко связывающих конусные кольца. В фиксирующих пальцах имеются пружины. В нейтральном положении корпус синхронизатора расположен посередине между зубчатыми колесами, при этом между коническими кольцами и коническими поверхностями зубчатых колес имеются зазоры, блокирующие пальцы располагаются с кольцевыми зазорами в центре отверстия муфты. При включении передачи муфта синхронизатора, перемещая фиксирующие пальцы, прижимает коническое кольцо к конической поверхности зубчатого колеса. Муфта, соединенная с ведомым валом, и зубчатое колесо, связанное с промежуточным валом, имеют разные частоты вращения.
126 Раздел IL Трансмиссия Рис. 85. Синхронизатор коробки передач автомобиля ЗИЛ-4314Л0: а -~ конструкция; б—г — работа; 1 — муфта синхронизатора; 2 — коническое кольцо; 3 — блокирующий палец; 4 — пружина; 5 — палец фиксатора; 6 — зубчатый венец муфты; 7 — зубчатое колесо; 8 — внутренний зубчатый венец зубчатого колеса 10 3 Рис. 86. Синхронизаторы коробок передач автомобилей КрАЗ-257 и МАЗ-5335: а — конструкция; б—г — работа; 1 — обойма вилки переключения; 2 — прорези корпуса; 3 — корпус; 4 — штифт; 5 — выступ муфты; 6 — зубчатый венец муфты; 7 — фиксатор; 8 — внутренний зубчатый венец муфты; 9 — коническое кольцо; 10 — обойма вилки переключения Под действием сил трения, возникающих между коническими поверхностями, коническое кольцо поворачивается относительно диска муфты до соприкосновения блокирующих конических фасок отверстий диска с блокирующими пальцами, происходит блокирование колец и муфты. После выравнивания частот вращения зубчатого колеса ведомого вала, а следовательно, и конических колец с блокирующими пальцами и муфты, блокирующее действие пальцев заканчивается, муфта перемещается дальше, а ее
Глава 2. Коробка передач 127 Рис. 87. Синхронизатор коробки передач автомобиля ГАЗ-53А: а — конструкция; б — детали; / — зубчатое колесо ведущего вала; 2 — конусное блокирующее кольцо; 3 — муфта; 4 — вилка; 5 — пружина; 6 — зубчатое колесо третьей передачи; 7 — сухарь; 8 — ступица; 9 — продольные пазы в ступице зубья бесшумно входят в зацепление с зубчатым венцом соответствующей передачи. Аналогично работают синхронизаторы и других конструкций. 2.4. Механизм управления коробкой передач Механизм переключения передач обычно расположен в крышке коробки передач и приводится в действие качающимся рычагом. В автомобиле ЗИЛ-4314.10 рычаг установлен на коробке передач и свободно качается в сферическом гнезде крышки коробки передач, опираясь на него шаровым утолщением. Рычаг удерживают пружина и фиксатор. Нижний конец рычага входит в паз одной из вилок, установленных на ползунах переключения передач. Движение рычага вперед и назад вызывает перемещение в противоположную сторону ползуна, вследствие чего его вилка передвигает зубчатое колесо или муфту синхронизатора, включая одну из передач. Точную установку зубчатого колеса во включенном и выключенном положениях, а также предотвращение самовыключения передач обеспечи-
128 Раздел IL Трансмиссия вают фиксаторы, состоящие из шариков и пружин, размещенных в вертикальных приливах крышки картера коробки передач. Расстояние между углублениями обеспечивает зацепление зубчатых колес по всей длине зубьев. Случайное включение одновременно двух передач предотвращает замок, состоящий из штифта, находящегося в радиальном отверстии среднего ползуна, и двух пар шариков, расположенных по обе стороны между крайними и средним ползунами. Для шариков замка на ползунах имеются соответствующие углубления. При перемещении среднего ползуна шарики выходят из его боковых углублений и входят в углубления крайних ползунов, запирая их. Если перемещается один из крайних ползунов, то шарики выходят из углублений и входят в углубления среднего ползуна, а другой крайний ползун запирается вследствие того, что штифт смещается (выбирая зазор) в его сторону и давит на шарики с другой стороны среднего ползуна. Чтобы привести в движение один из ползунов, два других должны находиться в нейтральном положении. Для включения первой передачи или передачи заднего хода необходимо приложить дополнительное усилие, чтобы рычагом переключения сжать до упора пружину промежуточного рычага предохранителя включения передачи заднего хода. На автомобилях марки «КамАЗ» применяется пневматическая система управления делителем коробки передач. В систему управления входят следующие элементы: воздушный кран с переключателем, имеющий два положения, соответствующих включению низших или повышенных передач (переключатель крепится на рычаге переключения передач); редукционный клапан; пневмоцилиндр; воздухораспределитель; клапан включения делителя; упор штока клапана. Воздух из тормозного пневмопривода поступает в редукционный клапан, который снижает давление до 390—436 кПа, затем воздух попадает в кран управления и клапан управления. Воздух подается в цилиндр при выключенном сцеплении. В этом случае упор открывает клапан включения делителя и воздух поступает в воздухораспределитель, поршни которого, перемещаясь в ту или иную сторону в зависимости от положения золотника в кране управления, направляют воздух в полости цилиндра, перемещая рычаг управления синхронизатором делителя в положение, соответствующее повышенной или пониженной передаче. 2.5. Гидромеханическая коробка передач Гидромеханическая коробка передач состоит из гидротрансформатора и механической ступенчатой коробки передач. Гидротрансформатор не обеспечивает требуемого диапазона передаточных чисел при высоком КПД, отключения ведущего вала от ведомого и движения автомобиля задним ходом. Поэтому на автомобилях применяют гидротрансформаторы в сочетании с механическими ступенчатыми коробками передач, т. е. комбинированные гидромеханические коробки передач. Гидротрансформатор состоит из рабочих колес с лопатками: ведущего (насосного), ведомого (турбинного) колес и неподвижного рабочего коле-
Глава 2. Коробка передач 129 са, воспринимающего реактивный момент. Каждое рабочее колесо закреплено на своем валу: насосное колесо крепится на валу маховика двигателя; турбинное колесо крепится на первичном валу коробки передач; рабочее колесо соединяется с неподвижным валом через роликовый механизм свободного хода. Коробка передач (двухступенчатая) состоит из первичного, вторичного и промежуточного валов с зубчатыми колесами, фрикционных сцеплений включения понижающей и «прямой» передач и соединения насосного и турбинного колес, зубчатого венца и зубчатой муфты включения передачи заднего хода с пневмоцилиндром и пружиной на штоке, большого и малого шестеренчатых насосов, центробежного регулятора. При работающем двигателе насосное колесо воздействует лопастями на жидкость, заставляя ее не только вращаться вместе с ним, но и перемещаться вдоль лопастей по направлению к выходу, вследствие чего поток жидкости проходит через турбинное колесо, затем через реактор и возвращается к входу в насосное колесо. Жидкость циркулирует по замкнутому кругу. При этом насосное колесо передает энергию потоку жидкости, а она — турбинному колесу. Величины передаваемой потоком энергии и силового воздействия на лопасти зависят от величины скорости жидкости и ее направления. У автомобильных гидротрансформаторов реактор соединен с его неподвижным валом через роликовый механизм свободного хода. При изменении направления момента рабочего колеса (из-за увеличения угловой скорости турбины) рабочее колесо отключается и вращается свободно, не воспринимая реактивного крутящего момента. С уменьшением угловой скорости турбинного колеса механизм свободного хода заклинивается, рабочее колесо снова останавливается и начинает воспринимать крутящий момент. Такие гидротрансформаторы называются комплексными. Для повышения КПД гидротрансформаторы блокируют, соединяя насосное и турбинное колеса с помощью фрикционного сцепления. В нейтральном положении фрикционы понижающей и «прямой» передач, соединения насосного и турбинного колес выключены и крутящий момент на ведомый (вторичный) вал не передается. На понижающей передаче включается фрикцион. Крутящий момент передается через гидротрансформатор, фрикцион понижающей передачи, зубчатые колеса понижающей передачи промежуточного вала и зубчатую муфту включения ведомого (вторичного) вала. Переключение на прямую передачу происходит автоматически, одновременным выключением фрикциона передачи. Момент от ведущего (первичного) вала передается через фрикцион прямой передачи на ведомый (вторичный) вал. Для движения автомобиля задним ходом зубчатая муфта вводится в зацепление с блоком зубчатых колес заднего хода, сжимая пружину включения зубчатой муфты. Затем включается фрикцион понижающей передачи. Крутящий момент передается через гидротрансформатор, фрикцион понижающей передачи, зубчатые колеса промежуточного вала, блок зубчатых колес заднего хода и зубчатую муфту на ведомый (вторичный) вал, который вращается в направлении, противоположном вращению ведущего (первичного) вала. 5 Устройство автомобиля
130 Раздел IL Трансмиссия 2.6. Электронные системы управления коробкой передач Системы управления коробкой передач, в которых применяются только гидравлика, вытесняются системами, в которых сочетаются элементы электроники и гидравлики (гидравлический привод сохраняется только применительно к фрикционам). При этом очевидны следующие преимущества; появляется возможность устанавливать несколько различных программ переключения передач, повышаются плавность включения передачи, гибкость и приспосабливаемость к различным типам автомобилей, появляется возможность применения упрощенных гидравлических цепей управления и механизмов свободного хода. Измерительные преобразователи системы определяют нагрузку, положение рычага переключения передач, положение переключателя программ и режима, а также частоту вращения коленчатого вала двигателя и ведомого (вторичного) вала в коробке передач. Блок управления обрабатывает эти данные в соответствии с установленной программой и вырабатывает сигналы управления коробкой передач. Электродинамические преобразователи образуют связь между электронными и гидравлическими цепями, в то время как соленоидные клапаны приводят в действие фрикционные. Используются аналоговые и цифровые регуляторы давления. Электронное управление коробкой передач включает в себя следующие элементы: • рычаг переключения передач с позиционным переключением; • переключатель программ; • устройство принудительного включения пониженной передачи; • датчик угла поворота дроссельной заслонки; • датчик крутящего момента коленчатого вала двигателя; • датчик частоты вращения коленчатого вала двигателя; • датчик частоты вращения ведомого вала коробки передач; • регулятор давления; • соленоидные клапаны; • электронный блок управления; • индикатор отказов; • датчик уменьшения крутящего момента коленчатого вала двигателя регулированием зажигания; • блок диагностики. 2.7. Раздаточные коробки Раздаточная коробка предназначена для распределения крутящего момента между несколькими ведущими мостами полноприводных (многоприводных) автомобилей, которые имеют высокие опорно-сцепные качества, что достигается путем оптимального распределения массы на ведущие колеса. Высокие опорно-сцепные качества таких автомобилей позволяют получать на ведущих колесах значительные крутящие моменты, для получения которых необходимо иметь большое передаточное число в трансмиссии. Для
Глава 2. Коробка передан 131 эффективной работы автомобиля повышенной проходимости диапазон передаточных чисел его трансмиссии должен быть примерно вдвое шире, чем позволяет обеспечить коробка передач базового автомобиля. Расширение диапазона передаточных чисел в трансмиссии автомобиля повышенной проходимости, в которой используется серийная коробка передач, и увеличение ее максимального передаточного числа достигаются введением в раздаточную коробку дополнительной пары зубчатых колес, которая называется понижающей передачей или демультипликатором. Он включается, когда автомобиль преодолевает труднопроходимые участки. Его наличие позволяет удвоить количество передаточных чисел в трансмиссии, увеличивая их значения на каждой, в том числе и на первой, ступени коробки передач. Требования, предъявляемые к раздаточным коробкам. Они должны: • распределять крутящий момент по ведущим мостам таким образом, чтобы обеспечивалась наилучшая проходимость автомобиля; • иметь возможность создания больших передаточных чисел для преодоления повышенных сопротивлений движению автомобиля; • иметь устройства, предотвращающие перегрузку деталей трансмиссии при включении демультипликатора; • не создавать повышенный уровень шума; • иметь высокий КПД. Классификация раздаточных коробок по типу привода. Если все выходные валы раздаточной коробки имеют жесткую механическую связь, привод называется блокированным. Если связь выходных валов раздаточной коробки обеспечивается через дифференциал, привод называется дифференциальным. Существуют также раздаточные коробки, обеспечивающие временное подключение одной из ветвей трансмиссии посредством автоматических устройств отбора мощности. В соответствии с конструктивной схемой трансмиссии раздаточные коробки передач могут отличаться числом выходных валов: обычно их два, но при параллельном приводе ведущих мостов грузового автомобиля может быть и три. 2.8. Раздаточная коробка автомобиля Г A3-66-11 Раздаточная коробка автомобиля ГАЗ-66-11 (рис. 88) с блокированным приводом представляет собой один агрегат с дополнительной коробкой передач и включает в себя: • ведущий вал с подвижным на шлицах зубчатым колесом включения прямой (задний мост) и понижающей передачи; • вал привода заднего моста с зубчатым колесом, имеющим наружный и внутренний зубчатые венцы; • промежуточный вал с зубчатым колесом включения понижающей передачи и подвижным (на шлицах) зубчатым колесом включения заднего и переднего мостов;
132 Раздел IL Трансмиссия Рис. 88. Раздаточная коробка: а — конструкция; б — блокировочное устройство; 1, 2 и 14 - пробки; 3 — сапун; 4 — ведущий вал; 5 — зубчатое колесо ведущего вала; 6 — зубчатое колесо ведомого вала; 7 — червячное колесо привода спидометра; 8 — червяк привода спидометра; 9 — промежуточный вал; 10 и 13 — зубчатые колеса промежуточного вала; // — вал привода переднего моста; 12 — зубчатое колесо привода переднего моста; 15 — колпак; 16 — сухарь; 17 — пружина; 18 и 25 — вилки; 19 и 20 — ползуны; 21 — гайка; 22 — кольцо; 23 — шайба; 24 — манжета • вал привода переднего моста с зубчатым колесом; • механизм управления. При включении прямой передачи крутящий момент передается через зубчатое колесо ведущего вала и внутренний зубчатый венец зубчатого колеса вала привода заднего моста.
Глава 2. Коробка передач 133 При включении понижающей передачи зубчатое колесо ведущего вала вводят в зацепление с зубчатым колесом промежуточного вала, второе (подвижное) зубчатое колесо промежуточного вала вводят в одновременное зацепление с зубчатым колесом привода (наружный зубчатый венец) вала заднего моста и зубчатым колесом привода вала переднего моста. Зубчатое колесо (подвижное) промежуточного вала находится постоянно в зацеплении с зубчатым колесом (наружный зубчатый венец) привода вала заднего моста. Механизм управления раздаточной коробкой состоит из рычага включения «прямой» и понижающей передач и рычага включения привода переднего моста. Понижающую передачу в раздаточной коробке можно включить только после остановки автомобиля и включения привода переднего моста. В механизме управления раздаточной коробкой имеется блокировочное устройство, которое не позволяет включить понижающую передачу при выключенном переднем мосте и включать передний мост при включенной понижающей передаче. Для этого между ползунами в стенке картера помещены два сухаря с пружиной между ними. На ползуне включения и выключения привода переднего моста имеются два углубления разной глубины под сухари блокировочного устройства. На ползуне включения прямой или понижающей передачи сделано три углубления под сухари: одно соответствует включению прямой передачи, среднее — нейтральному положению и третье — включению понижающей передачи. Между углублением соответствующим включению прямой передачи и углублением нейтрального положения имеется лыска. Ползун включения прямой или понижающей передач может перемещаться на включение прямой передачи. Благодаря наличию на ползуне лыски между углублениями сухари не препятствуют этому перемещению. При включении привода переднего моста напротив сухарей установится глубокое углубление ползуна включения переднего моста. Сухари при перемещении ползуна включения прямой передачи не будут упираться друг в друга, и включение понижающей передачи станет возможным. При этом отключить привод переднего моста будет невозможно, не выключив предварительно понижающую передачу. 2.9. Раздаточная коробка передач автомобиля ВАЗ-2121 Раздаточная коробка автомобиля ВАЗ-2121 (рис. 89) имеет дифференциальный привод и представляет собой один агрегат с дополнительной коробкой передач и постоянным приводом переднего моста. Раздаточная коробка передач включает в себя: • картер; • ведущий вал со свободно сидящими зубчатыми колесами включения прямой и понижающей передач, между которыми имеется синхронизатор их включения; • промежуточный вал с жестко сидящими на нем зубчатыми колесами включения прямой и понижающей передач;
134 Раздел II, Трансмиссия Б~Б 10 11 1213 14 15 16 171819 20 Рис. 89. Раздаточная коробка: 1 — картер привода переднего моста; 2 — вал привода переднего моста; 3 — фланец; 4, 10 — зубчатые колеса; 5 — муфта блокировки дифференциала; 6 — ведомое зубчатое колесо привода спидометра; 7 — ведущее зубчатое колесо привода спидометра; 8 — корпус привода спидометра; 9 — ведущий вал; 11 — крышка переднего подшипника ведущего вала; 12 — упорное кольцо подшипника; 13 — передняя крышка; 14 — зубчатое колесо высшей передачи; 75— муфта включения передач; 16— ступица муфты; /7— зубчатое колесо низшей передачи; 18 — втулка зубчатого колеса; 19 — картер; 20 — задняя крышка; 21 — гайка; 22 — промежуточный вал; 23 — вал привода заднего моста; 24 — зубчатое колесо привода заднего моста; 25 — сателлит; 26 — ось сателлитов; 27 — ведомое зубчатое колесо; 28 — рычаг переключения передач; 29 — рычаг блокировки дифференциала; 30 •— выключатель контрольной лампы блокировки дифференциала; 31 — крышка картера привода переднего моста; 32 — ось крепления кронштейна подвески; 33 — пробка сливного отверстия; 34 — пробка заливного отверстия • межосевой шестеренчатый дифференциал, на шлицах которого расположена муфта включения блокировки; • вал привода переднего моста с жестко сидящим зубчатым колесом блокировки дифференциала; • вал привода заднего моста; • механизм управления. Привод включения передач раздаточной коробки механический. Рычаг включения передач шарнирно установлен в проушинах кронштейна на оси. Нижний конец рычага входит в паз штока и уплотнен в нем фигурной пружиной. Вилка включения крепится к штоку (ползуну) и входит в паз зубчатой муфты синхронизатора. В нейтральном и включенном положениях шток удерживается шариковым фиксатором с пружиной. Муфта блокировки дифференциала расположена на шлицевой части корпуса дифференциала. При блокировке дифференциала она соединяет вал привода переднего моста с корпусом дифференциала. В паз зубчатый муфты заходит вилка, закрепленная на штоке болтом. Шток вилки блокировки дифференциала фиксируется аналогично со штоком включения передач.
Глава 3. Карданная передача 135 При включении прямой передачи крутящий момент поступает от муфты синхронизатора на зубчатое колесо прямой передачи, далее на зубчатое колесо промежуточного вала и на ведомое зубчатое колесо, венец которой крепится к корпусу дифференциала, далее на валы привода мостов. При включении понижающей передачи крутящий момент поступает от муфты синхронизатора на зубчатое колесо понижающей передачи, далее — на зубчатое колесо промежуточного вала, ведомое зубчатое колесо и вал привода мостов. 2.10. Спидометр Автомобильные спидометры различаются по передаточным числам механизма, приводящего в движение счетный узел, размерам и внешнему виду. Обычный спидометр имеет механический привод, но может иметь и электрический привод. Диапазон измерения скорости — от 0 до 200 км/ч. Спидометр состоит из двух приборов: указателя скорости движения и суммарного счетчика пройденного пути. Для контроля частоты вращения ведомого вала коробки передач применяют тахометр с приводом от распределительного вала двигателя. Спидометр состоит из магнита, катушки, валика привода стрелки, трибки с шестью зубцами, барабана с цифрами и зубцами с обеих сторон, привода. Механический привод осуществляется гибким тросом, присоединенным одним концом к прибору, установленному в кабине на щитке, а другим — к месту привода в коробке передач (раздаточной коробке). Гибкий вал выполнен из профилированной проволоки с ниппелями и гайками на концах. Сверху имеется уплотнительная пластмассовая оболочка. Гибкий вал свободно вращается в защитной оболочке и имеет также некоторый осевой зазор. Гибкий вал навивают из шести—семи слоев проволоки с противоположным направлением навивки соседних слоев. Глава 3 Карданная передача Механизм, состоящий из одного или нескольких карданных валов и карданных шарниров и предназначенный для передачи крутящего момента между агрегатами, оси которых не совпадают и могут изменять свое положение, называется карданной передачей (рис. 90). Для компенсации изменения расстояния между агрегатами трансмиссии в карданной передаче используют подвижные в осевом направлении шлицевые муфты. Требования, предъявляемые к карданным передачам: • возможность передачи крутящего момента под большим углом (до 45°);
136 Раздел IL Трансмиссия Рис. 90. Карданные передачи: а с одним валом; б — с двумя валами (автомобиль ЗИЛ-4314.10); в — с двумя валами и упругим сочленением (автомобиль ВАЗ-2101 «Жигули»); 1 и 3 — вилки; 2 и /Р — масленки; 4 — шлицевал втулка; 5 — наконечник со шлицами; 6, /4 и 18 — уплотнительные манжеты; 7 — защитный чехол; 8 — карданный вал; 9 — карданный шарнир; 10 — промежуточный карданный вал; 11 — подушка опоры; 12 — скоба крепления подушки; 13 — гайка крепления подшипника промежуточной опоры; 15 — игольчатый подшипник крестовины; 16 — крестовина; 17— скользящая вилка; 20 — хомут; 21 — кронштейн опоры; 22 — шарикоподшипник; 23 — заглушка; 24 — упругая резиновая муфта • передача крутящего момента не должна сопровождаться большими дополнительными динамическими нагрузками в трансмиссии; • при любых условиях эксплуатации должен обеспечиваться высокий КПД передачи. Карданные шарниры можно разделить: • по кинематике на синхронные (равные угловые скорости) и асинхронные (неравные угловые скорости); • по конструкции на полные, полукарданные — жесткие (угол до 2°) и упругие (угол до 12°). На рис. 91 показаны варианты расположения карданных передач на различных автомобилях. Карданная передача автомобиля ЗИЛ-4314.10 включает в себя: • промежуточный полый карданный вал, на одном конце которого приварена вилка, на другом — шлицевая втулка;
Глава J. Карданная передана 137 Рис. 91. Расположение карданных передач на автомобилях: а — легковом; б — грузовом; в—д — грузовых повышенной проходимости; I — коробка передач; 2, 4, 9 и 11 — карданные валы; 3 и 10 — задние ведущие мосты; 5 — промежуточная опора; 6 — раздаточная коробка; 8 — передний ведущий мост • скользящую шлицевую вилку; • карданный вал, на концах которого приварены вилки карданных шарниров; • три карданных шарнира неравных угловых скоростей, состоящих из двух вилок и крестовины с четырьмя шипами под игольчатые подшипники крепления с вилками;
138 Раздел II. Трансмиссия • промежуточную опору, состоящую из кронштейна опоры, подушки опоры, скобы крепления подушки, шарикоподшипника с гайкой крепления. 3.1. Карданные шарниры неравных угловых скоростей Карданные шарниры неравных угловых скоростей (рис. 92, а—в) применяются в карданных передачах для передачи крутящего момента от коробки передач (раздаточной коробки) на главную передачу ведущего моста под постоянно изменяющимся углом. Карданный шарнир неравных угловых скоростей отличается тем, что при равномерном вращении ведущего вала скорость ведомого вала постоянно изменяется. За один оборот карданного вала ведомая вилка при вращении дважды обгоняет ведущую и дважды отстает от нее. Вследствие неравномерности возникают дополнительные нагрузки на детали механизмов ведущего моста, увеличивая интенсивность изнашивания. Чтобы устранить неравномерность вращения ведомой части, устанавливают несколько карданных шарниров (в автомобиле ЗИЛ-4314.10 их три). Для компенсации осевых удлинений используют шлицевое соединение одной из вилок кар- Рис. 92. Карданные шарниры: а—в — неравных угловых скоростей; г и д — равных угловых скоростей; 7, 77, 24 и 28 — вилки; 2 — карданный вал; 3 — крышка; 4 — стопорная пластина; 5 — стакан подшипника; 6 — иголки; 7 — войлочные уплотнения; 8 — масленка; 9 — крестовина; 10 — предохранительный клапан; 12 — отражатель; 13 — самоподжимная уплотнитель- ная манжета; 14 — стопорное кольцо; 75 и 16 — радиальные и торцевые уплотнительные манжеты; 17 — ведущие шарики; 18 — наружный кулак; 19 — центральный шарик; 20— внутренний кулак; 21 — штифт; 22 — шпилька; 23 — полуось; 25 и 21 — полуцилиндрические кулаки; 26 — центральный диск
Глава J. Карданная передача 139 данного шарнира с валом. Промежуточная опора снижает вибрацию и предотвращает возникновение нагрузок в промежуточном валу, которые возникают из-за неточности монтажа опоры и деформации рамы. 3.2. Шарниры равных угловых скоростей Шарниры равных угловых скоростей (рис. 92, г—д) применяются для передачи крутящего момента от дифференциала на ведущие управляемые колеса. При соединении валов шарнирами равных угловых скоростей ведомый вал вращается равномерно с постоянной угловой скоростью, соответствующей угловой скорости ведущего вала. Чаще применяют шариковые, кулачковые и трехшиповые шарниры (рис. 93, 94). Шариковый шарнир равных угловых скоростей (шарнир Вейса) состоит из следующих элементов (см. рис. 92, г): • ведущего вала со шлицами, входящими в зацепление с полуосевым зубчатым колесом дифференциала и вилкой с делительными канавками; • ведомого вала со шлицами, входящими в зацепление с ведущим фланцем ступицы колеса и вилкой с делительными канавками; • четырех ведущих шариков, расположенных в делительных канавках вилок; • центрирующего шарика вилок, помещенного в сферические углубления на торцах вилок. Рис. 93. Привод передних колес: 1 — корпус внутреннего шарнира; 2 — фиксатор внутреннего шарнира; 3 — кольцо крепления чехла; 4 — вал привода передних колес; 5 — защитный кожух чехла; 6— защитный чехол; 7— упорное кольцо обоймы; 8 — сепаратор; 9 — хомут; 10 — шарик; 11 — обойма; 12 — стопорное кольцо обоймы; 13 — корпус наружного шарнира Рис. 94. Детали наружного шарнира привода передних колес: 1 — корпус шарнира; 2 — сепаратор; 3 — обойма; 4 — шарики
140 Раздел IL Трансмиссия Центрирующий шарик имеет лыску, которая располагается при сборке против вставленного ведущего шарика. Шарик стопорят шпилькой, расположенной в осевом канале ведомой вилки, одним концом входящей в отверстие центрирующего шарика, таким образом запирая собранный карданный шарнир. Делительные канавки имеют специальную форму, при которой ведущие шарики независимо от угловых перемещений вилок всегда располагаются в плоскости, делящей пополам угол (биссекторная плоскость) между осями ведущей и ведомой вилок. Благодаря этому обе вилки имеют одинаковую частоту вращения. Предельный угол между осями валов 32—33° Шариковый шарнир равных угловых скоростей (шарнир Рцеппа) состоит из двух кулаков: внутреннего, связанного с ведущим валом, и наружного, связанного с ведомым валом. В обоих кулаках имеется по шесть тороидных канавок, расположенных в плоскостях, проходящих через оси валов. В канавках находятся шарики, положение которых задается сепаратором, взаимодействующим с валами через делительный рычажок. Один конец рычажка поджимается пружиной к гнезду внутреннего кулака, другой скользит в цилиндрическом отверстии ведомого вала. При изменении относительного положения валов рычажок наклоняется и поворачивает сепаратор, который в свою очередь, изменяя положение шариков, обеспечивает их расположение в бисекторной плоскости. В данном шарнире крутящий момент передается через все шесть шариков. Предельный угол между осями валов 35—38° Шариковый шарнир Рцеппа без делительного рычажка (см. рис. 94). Установка шариков в бисекторную плоскость происходит благодаря эксцентричности сфер, в которых располагаются оси тороидальных канавок кулаков. Центры сфер, в которых лежат оси канавок наружного (ведомого) и внутреннего (ведущего) кулаков, расположены так, что при повороте оси ведомого вала по часовой стрелке верхний шарик выталкивается из сужающегося пространства между кулаками, а нижний с помощью сепаратора перемещается в увеличивающееся пространство с другой стороны шарнира. Остальные шарики занимают промежуточное положение. Работа данного шарнира подобна работе шарнира Рцеппа, имеющего делительный рычажок, однако характеризуется менее точной кинематикой. Простота и надежность конструкций, высокая несущая способность при небольших габаритных размерах способствуют их широкому применению на переднеприводных автомобилях. Кулачково-дисковый шарнир равных угловых скоростей (шарнир Тракта) (см. рис. 92, д) состоит из связанных с ведущим и ведомым валами полуцилиндрических вилок и вставленных в них цилиндрических кулаков, в пазы которых входит диск, передающий крутящий момент от ведущей вилки к ведомой. Максимальное значение угла между валами до 45° Большая контактная поверхность деталей, воспринимающая усилия, и высокая несущая способность обуславливают их применение на тяжелых грузовых автомобилях. Трехшиповые шарниры. В трехшиповом шарнире крутящий момент от ведущего вала передают три сферических ролика, которые установлены на радиальных шипах, жестко связанных с корпусом шарнира ведомого вала. Шипы относительно друг друга располагаются под углом 120° Ведущий вал имеет трехпальцевую вилку, в цилиндрические пазы которой входят
Глава 4. Мосты 141 ролики. При передаче момента между несоосными валами ролики перекатываются со скольжением вдоль пазов и одновременно скользят в радиальном направлении относительно шипов. Предельный угол между осями валов до 40° Особенностью данного шарнира является то, что в отличие от шариковых шарниров передача момента от ведущих элементов на ведомые происходит не в бисекторной плоскости, а в полости, проходящей через оси шипов. Равенство частот вращения ведущего и ведомого валов обеспечивается при любом взаиморасположении их осей. Глава 4 Мосты Мостом автомобиля (прицепа, полуприцепа) называют агрегат, связывающий между собой правое колесо и левое колесо оси, воспринимающие силы, действующие на них со стороны дороги, и через подвеску передающие их на несущую конструкцию. Отличительной особенностью моста является наличие балки, связывающей между собой колеса одной оси и являющейся опорой для их подшипниковых узлов. Автомобиль может иметь один или несколько мостов или не иметь ни одного, если колеса правого и левого бортов не связаны между собой или связаны с подвеской не через общую для них несущую конструкцию, а посредством элементов, не образующих самостоятельного агрегата. В таком случае следует говорить только о наличии подвески, даже если колеса каким-либо другим способом связаны между собой, например, через элементы трансмиссии или рулевого управления. Конструкция моста может влиять на такие эксплутационные качества автомобиля, как надежность, безопасность, комфортабельность, управляемость, проходимость. Требования, предъявляемые к мостам: • малая масса (при уменьшении массы повышается плавность хода); • жесткость конструкции; • небольшие размеры в вертикальном направлении; • учет компоновочных особенностей транспортного средства; • прочность (оказывает значительное влияние на безопасность автомобиля). По расположению на автомобиле мосты могут быть: • передними; • промежуточными (на трехосном автомобиле такой мост называют средним); • задними; Различают мосты: • управляемые; • ведущие; • комбинированные (колеса моста и ведущие, и управляемые); • поддерживающие (колеса моста не являются ни ведущими, ни управляемыми).
142 Раздел II. Трансмиссия Как правило, балка моста представляет собой жесткую бесшарнирную конструкцию. Такой мост называют неразрезным. Если же при наличии независимой подвески правого и левого колес их связь осуществляется посредством моста, то такой мост называют разрезным. 4.1. Ведущий мост В наиболее распространенной конструкции ведущего моста балка выполняет одновременно функции картера (внутри балки располагаются главная передача, дифференциал и полуоси привода ведущих колес). Балки мостов бывают трех видов: • разъемные; • цельные; • типа «банджо». Разъемная балка состоит из двух половин, соединенных болтами. Кожухи приводных валов, так называемые полуосевые чулки, запрессованы в литые средние части балки и дополнительно соединены с ним, как правило, с помощью заклепок или электрозаклепок. Средняя часть балки образует картер главной передачи с соответствующими гнездами под подшипники. Обычно эту часть конструкции изготовляют из чугуна или стали. Конструкция разъемной балки считается устаревшей. Из-за наличия поперечного стыка она имеет не очень высокую жесткость, кроме того, велика вероятность появления течи масла через стык, нагруженный изгибающими моментами, так же затруднительны и трудоемки операции регулировки. При необходимости ремонта механизмов мост с автомобиля демонтируют. Цельная балка имеет среднюю часть, которая выполнена в виде одной детали. Полуосевые чулки представляют собой стальные трубы, которые запрессованы в среднюю литую часть балки. Детали механизмов при сборке устанавливаются через съемную заднюю крышку, при снятии которой можно производить осмотр деталей без демонтажа. Однако проводить мон- тажно-демонтажные и регулировочные работы, где требуется специальный инструмент, без снятия моста с автомобиля затруднительно. Балка типа «банджо». Главная передача монтируется в картере, связанном с балкой через фланцевое соединение, и в сборе, без нарушения каких-либо регулировок, устанавливается в балку и демонтируется из нее, причем балка при этом может остаться на автомобиле. Плоскость разъема балки и картера главной передачи может быть вертикальной или горизонтальной. Балка типа «банджо» (рис. 95) может быть изготовлена штамповкой из стали, литьем из чугуна или может быть сварной. Центральная ее часть состоит из двух штампованных половинок (в грузовом автомобиле), между которыми ввариваются вкладки. Приваренное спереди усилительное кольцо имеет ряд выштамповок для обеспечения монтажных зазоров при сборке моста и резьбовые отверстия для болтов крепления картера главной пе-
Глава 4. Мосты 143 Рис. 95. Балка заднего ведущего моста: 1 и 2 — шейки под подшипники ступиц; 3 — втулка уплотнительной манжеты; 4 — фланец; 5 — цапфа; 6 — рессорная подушка; 7 — картер; 8 — скоба; 9 — кронштейн тройника; 10 — отверстие для сапуна; 11 — выемки; 12 — отверстие для слива масла; 13 — крышка картера редачи. К верхней части балки привариваются стальные подушки под рессоры. К средней части балки с двух сторон встык привариваются цапфы с напрессованными на них стальными фланцами, к которым крепятся опорные щиты тормозных механизмов. Ближе к наружным частям балки на цапфы напрессовываются кольца под уплотнительную манжету ступицы колеса, имеются шлифованные шейки под подшипники ступицы колеса и резьба крепления колес. Конструкция балок ведущих мостов зависит от особенностей трансмиссии автомобиля, которые определяются конструкцией главных передач (центральная или разнесенная) и схемой привода ведущих мостов. Если схемой трансмиссии предусмотрена последовательная передача крутящего момента к заднему ведущему мосту через средний, то последний выполняется проходным. При этом бездифференциальная связь среднего и заднего мостов допустима только для автомобилей повышенной проходимости. Для автомобилей ограниченной проходимости, имеющих колесную формулу 6 х 4, применение межосевого дифференциала, не допускающего возникновения циркуляции мощности, является обязательным. Наиболее разумным, с точки зрения компоновки, местом установки межосевого дифференциала является средний мост. Межосевой дифференциал делают блокируемым. 4.2. Комбинированный мост Комбинированный мост чаще всего является передним управляемым и ведущим. Балка комбинированного моста (рис. 96) из-за наличия шарниров в приводе управляемых колес имеет более сложную конструкцию, осо-
144 Раздел IL Трансмиссия Рис. 96. Элементы привода к передним ведущим колесам автомобиля ГАЗ-66-11:7— ведущий фланец; 2 — канал подвода воздуха; 3 — крышка фланца; 4 и 5 — гайки подшипников; 6 - стопорная шайба; 7 — подножка; 8 — ступица; 9 — наружный кулак; 10 — запорный воздушный кран; 77 — колесо; 12 — блок манжет; 13 — шкворень; 14 — рычаг; 75 — втулка; 16 — манжета; 17 — шаровая опора; 18 — внутренний кулак; 19— цапфа; 20— тормозной диск бенно в части шкворневого узла. Поскольку ось вала, подводящего к колесу крутящий момент, должна пересекаться с осью шкворня, последний в качестве отдельной детали не существует, а представлен в виде двух соос- ных шипов, установленных в расположенных по краям балки шаровых опорах поворотного устройства. Определенное расположение шипов создает необходимые для стабилизации управляемых колес углы наклона оси поворота колеса в поперечной и продольной плоскостях. Поворотный кулак имеет сборную конструкцию и устанавливается на шипах шаровой опоры с помощью роликовых конических подшипников. Регулировка обеспечивается посредством установленных между их наружными кольцами и крышками прокладок. Крутящий момент через шарнир равных угловых скоростей передается на вал привода колеса, на наружном конце которого выполнены шлицы для установки ведущего фланца, посредством которого крутящий момент передается ступице колеса. Изменение плоскости вращения колеса обеспечивается входящим в состав рулевого управления рычагом поворотного кулака.
Глава 4. Мосты 145 4.3. Главные передачи Главные передачи увеличивают крутящий момент и передают его на полуось, расположенную под углом 90° к продольной оси автомобиля (при расположении двигателя параллельно продольной оси автомобиля). Требования, предъявляемые к главной передаче: • оптимальное значение передаточного числа; • высокий КПД; • низкий уровень шума; • небольшие вертикальные размеры (как правило, именно нижняя точка картера главной передачи определяет величину дорожного просвета). По числу ступеней преобразования передаточного числа главные передачи делятся на одинарные (рис. 97, а, б) и двойные (рис. 97, в). Главные одинарные передачи могут быть: • коническими (оси зубчатых колес пересекаются); • гипоидными (оси зубчатых колес перекрещиваются); • цилиндрическими; • червячными (с верхним или нижним расположением червяка). В отличие от одинарной, двойная передача состоит из двух пар зубчатых колес. По компоновочной схеме главные двойные передачи делятся на центральные и разнесенные. В центральной главной передаче обе пары зубчатых колес составляют центральный редуктор. В разнесенной главной передаче одна пара зубчатых колес образует центральный редуктор, а вторая идет к ведущим колесам, образуя два колесных редуктора с одинаковыми передаточными числами. По типу главные двойные передачи делятся на следующие зубчатые зацепления: • коническо-цилиндрические; • цилиндрическо-конические; • коническо-планетарные. Главная передача называется проходной, если имеет проходной вал, посредством которого она связана с другой главной передачей или непроходной, если возможность вывода крутящего момента не предусмотрена. Существуют переключаемые главные передачи, обеспечивающие возможность выбора одного из двух передаточных чисел. Такие передачи называются двухступенчатыми. Рис. 97. Главные передачи: а — коническая; б — гипоидная; в — двойная; 1 и 2 — ведущее и ведомое конические зубчатые колеса соответственно; 3 и 4 — ведущее и ведомое цилиндрические зубчатые колеса соответственно
146 Раздел IL Трансмиссия 4.4. Главные одинарные передачи Цилиндрическая одинарная главная передача — самая простая конструкция главной передачи обычно бывает у легковых автомобилей с поперечным расположением силового агрегата. Одинарная цилиндрическая передача с косозубыми зубчатыми колесами (для уменьшения уровня шума), ведущее зубчатое колесо выполнено как одно целое с ведомым валом коробки передач и ведомое зубчатое колесо (зубчатый венец крепится к корпусу коробки дифференциала). Коническая и гипоидная главные передачи. На автомобилях с продольным расположением силового агрегата конструкция главной передачи более сложная. Используют конические и гипоидные главные передачи (рис. 98), которые состоят из вала-шестерни ведущего и ведомого зубчатых колес, последнее крепится к корпусу коробки дифференциала. Вал-шестерня получает крутящий момент от карданной передачи. Рис. 98. Ведущий мост автомобиля ГАЗ-53-12: 1 — картер заднего моста; 2 — полуось; 3 — маслоуловитель; 4 — регулировочный винт; 5 и 77 — регулировочные прокладки; 6 — стакан; 7 — крышка; 8 — зубчатое колесо; 9 — фланец; 10, 12 и 26 — конические роликоподшипники; 13 — пробка заливного отверстия; 14 — цилиндрический роликоподшипник; 75 — стопорное кольцо; 16 и 24— опорные шайбы; /7— сателлит; 18 — картер главной передачи; 19 и 27 — регулировочные гайки; 20 — правая коробка сателлитов; 21 — крестовина; 22 — зубчатое колесо; 23 — левая коробка сателлитов; 25 — полуосевое зубчатое колесо; 28 — мас- лоприемная трубка; а — канал
Глава 4. Мосты 147 Зубчатые колеса конических и гипоидных передач с точки зрения технологии производства примерно равнозначны. Однако эксплуатационные свойства этих передач различаются. Преимуществом гипоидной передачи является то, что ось ее ведущего зубчатого колеса расположена ниже оси ведущих колес, вследствие чего центр тяжести автомобиля ниже, что повышает его устойчивость. Гипоидная передача более надежна, обеспечивает более низкий уровень шума при работе, чем передача с обычными коническими зубчатыми колесами со спиральными зубьями. Червячная передача. Основные свойства червячной передачи — низкий уровень шума при работе, небольшие габаритные размеры, большое передаточное число и относительно низкий КПД. Кроме того, следует отметить большие компоновочные возможности. Червячная передача позволяет легко обеспечить последовательную передачу крутящего момента через две или несколько главных передач, увеличить дорожный просвет автомобиля или понизить пол, например, в городском автобусе. 4.5. Главные двойные передачи Наибольшее передаточное число, которое можно получить, применив одинарную зубчатую передачу, ограничивается диаметром ведомого зубчатого колеса. Для того чтобы передаточное число было больше 6,7, применяются главные двойные передачи. Они позволяют обеспечить практически любое передаточное число и создавать проходные передачи, предусмотренные конструкцией трансмиссии. Главные двойные передачи устанавливаются на автомобилях большой грузоподъемности, когда общее передаточное число трансмиссии должно быть значительным, так как передаются крутящие моменты большой величины. В главной двойной передаче крутящий момент увеличивается последовательно двумя парами зубчатых колес, одна из которых — коническая, а другая — цилиндрическая. Общее передаточное число двойной передачи равно произведению передаточных чисел составляющих пар. Центральная главная двойная передача автомобилей ЗИЛ-4314.10 (рис. 99) состоит из следующих элементов: • ведущего конического зубчатого колеса, изготовленного как одно целое с валом, который получает крутящий момент от карданной передачи; • ведомого конического зубчатого колеса со спиральными зубьями, которое крепится к фланцу промежуточного вала заклепками; • промежуточного вала с косозубым цилиндрическим зубчатым колесом (ведущим), изготовленным как одно целое с валом; • ведомого цилиндрического косозубого колеса, которое крепится болтами к корпусу коробки дифференциала, состоящего из левой и правой чашек. Опорами вала ведущего конического зубчатого колеса служат роликоподшипники, расположенные в стакане, прикрепленном болтами к картеру главной передачи. Опорами промежуточного вала ведущего цилиндриче-
148 Раздел IL Трансмиссия Рис. 99. Ведущий мост автомобиля ЗИЛ-4314.10: / — фланец; 2 ~ манжета; 3, 15, 18 и 32 — крышки; 4 — шайба; 5 — уплотнительная прокладка; 69 9, 14, 24 и 31 — роликоподшипники; 7— стакан; 8 — регулировочные шайбы; 10 и 13— регулировочные прокладки; 11 — коническое ведущее зубчатое колесо; 12 — коническое ведомое зубчатое колесо; 16 — цилиндрическое ведущее зубчатое колесо; 17— картер главной передачи; 19 и 29 — опорные шайбы; 20 — правая чашка дифференциала; 21 — цилиндрическое ведомое зубчатое колесо; 22 — полуосевое зубчатое колесо; 23 — левая чашка дифференциала; 25 — регулировочная гайка; 26 — полуось; 27 — картер моста; 28 — сателлит; 30 — крестовина; 33 — распорная втулка ского зубчатого колеса являются конические роликоподшипники, которые размешены в боковых крышках картера главной передачи. Для регулировки подшипников предусмотрены регулировочные прокладки. Коробка дифференциала вращается на двух конических роликоподшипниках, закрытых крышками. Эти роликоподшипники регулируются специальными гайками. Разнесенная главная двойная передача (рис. 100) состоит из центральной главной конической передачи и двух колесных редукторов. Разделение вто-
Глава 4. Мосты 149 Рис. 100. Задний мост автомобиля МАЗ-5335 и его элементы: а — кинематическая схема; б — конструкция; в — колесный редуктор; г — детали колесного редуктора; д — главная передача и дифференциал; 1 — солнечная шестерня; 2 — сателлит; 3 — наружная чашка водила; 4 — коронное ведомое зубчатое колесо; 5 — ступица заднего зубчатого колеса; 6 — полуось; 7 — колесный редуктор; 8 — тормозной механизм задних колес; 9 — стопорный штифт кожуха полуоси; 10 — кожух полуоси; 11 — центральный редуктор; 12 — тормозной разжимной кулак; 13 и 16— крышки; 14 w 22 — стопорные кольца; 15— упорный сухарь; 17 — ось сателлита; 18 — подшипник сателлита; 19 — стопорный болт оси сателлита; 20 — пробка заливного отверстия; 21 — контргайка подшипника ступицы; 23 — гайка подшипника ступицы; 24 — кожух полуоси; 25 — упор зубчатого колеса; 26 — внутренняя чашка водила; 27 — полуосевое зубчатое колесо; 28 — сателлит дифференциала; 29 — крестовина дифференциала; 30 — цилиндрический роликоподшипник; 31 — конический подшипник зубчатого колеса; 32 — фланец; 33 — манжета; 34 — регулировочные прокладки; 35, 37 — зубчатые колеса; 36 — картер редуктора; 38 — ограничитель зубчатого колеса; 39 — правая чашка дифференциала; 40 — демонтажный болт картера
150 Раздел И. Трансмиссия рого элемента главной передачи надвое и разнесение этих половин к колесам существенно осложняют и утяжеляют конструкцию, но в то же время дают следующий ряд преимуществ: • уменьшение вертикальных размеров центральной части передачи тем, что в ней находится одна лишь коническая пара с небольшим диаметром ведомого зубчатого колеса; • увеличение дорожного просвета автомобиля путем поднятия оси главной передачи над осью колес; • уменьшение диаметра приводных валов; • уменьшение реактивного момента, воспринимаемого средней частью балки моста. Это обусловливает широкое применение разнесенных главных передач, в частности, на грузовых автомобилях и автобусах большой массы. При этом в большинстве случаев применяются планетарные редукторы, которые благодаря малым размерам удается разместить внутри обода колеса. Двойная разнесенная главная передача (автомобиль МАЗ-5335) состоит из главной конической передачи, установлен в картере заднего моста. Колесный редуктор состоит из следующих элементов: • солнечной шестерни; • коронного (ведомого) зубчатого колеса, которое жестко крепится к ступице колеса; • водила, состоящего из двух чашек, на которых крепятся оси сател- литных зубчатых колес, жестко прикрепленных к кожуху полуосей; • трех сателлитных зубчатых колес, сидящих на неподвижных осях водила. Крутящий момент от полуоси передается на солнечную шестерню, а от нее через три сателлита и коронное зубчатое колесо на ступицу колеса. Передаточные числа колесного редуктора определяются отношением числа зубьев коронного зубчатого колеса и солнечной шестерни, поэтому изменением указанных чисел зубьев может быть получен ряд передаточных чисел при сохранении межосевого расстояния. Сателлиты не влияют на передаточное число. Конические и гипоидные зубчатые пары очень чувствительны к нарушению расчетного взаимного расположения контактирующих профилей зубьев, при нарушении которого увеличивается уровень шума передачи, снижается КПД и срок службы. Неправильное взаимное расположение зубчатых колес может иметь место вследствие неточной регулировки при сборке или из-за упругих прогибов деталей под действием рабочих нагрузок. Для уменьшения прогибов необходимо увеличивать жесткость главной передачи, которая зависит от конструкции подшипниковых узлов, типа применяемых подшипников, длины консольных участков, плотности посадки деталей и т. п. Поскольку валы главных передач испытывают большую осевую нагрузку, в их конструкциях применяются радиально-упорные подшипники. Для увеличения жесткости главной передачи их располагают так, чтобы вершины конусов, образованных нормалями к рабочим поверхностям подшипников, находились снаружи подшипникового узла. Такое расположение требует применения разных по размерам (из-за неравномерности нагрузок на подшипники) подшипников и позволяет существенно увеличить жест-
Глава 4. Мосты 151 кость подшипникового узла, уменьшая прогиб зубчатого колеса под действием радиальной силы, возникающей в зацеплении. Дополнительное увеличение жесткости дает раздвижение подшипников на некоторое расстояние. При консольной конструкции ведущего конического зубчатого колеса это применяется всегда. Радикально увеличивает жесткость ведущего зубчатого колеса устранение консоли путем установки дополнительного (обычно третьего) подшипника. Очень важным в повышении жесткости подшипникового узла является предварительный натяг подшипников, который устраняет зазоры и создает начальное сжатие тел качения. В результате предварительного натяга подшипников при сборке на тела качения подшипников действуют радиальные и осевые силы, которые после приложения рабочей нагрузки перераспределяются между подшипниками, а внутри подшипника — между телами качения. Регулирование подшипников ведомых валов (коробка дифференциала) осуществляется с помощью специальных гаек, которые стопорятся после регулировки пластинами, имеющими выступ, входящий в паз между специальными торцевыми зубьями гаек. 4.6. Дифференциалы Дифференциал предназначен для распределения крутящего момента между ведущими колесами и позволяет вращаться колесам с разными угловыми скоростями. Дифференциалы по конструкции делятся на шестеренчатые, кулачковые и червячные. Шестеренчатые дифференциалы по типу используемых зубчатых колес могут быть коническими и цилиндрическими. По крутящим моментам на выходных валах дифференциалы делятся на симметричные (крутящий момент поровну распределяется между выходными валами) и несимметричные. По распределению крутящего момента дифференциалы могут быть: • с постоянным распределением — конические и цилиндрические; • с непостоянным распределением — с принудительной блокировкой и самоблокирующиеся, а также пульсирующие, свободного хода (обгонные) и повышенного трения. При движении автомобиля на повороте его внешнее и внутреннее колеса проходят разные пути. Колесо, катящееся по внутренней кривой, проходит меньший путь, чем колесо, катящееся по внешней кривой. Следовательно, внешнее колесо автомобиля должно вращаться несколько быстрее внутреннего. Это происходит и при прямолинейном движении, если задние колеса автомобиля имеют неодинаковые диаметры, что наблюдается при неравномерном распределении нагрузки в кузове, неодинаковом износе шин, различном внутреннем давлении воздуха в шинах или при движении по неровной дороге. Чтобы ведущие колеса автомобиля могли вращаться с различной частотой, их крепят не на одном общем валу, а на
152 Раздел IL Трансмиссия двух, так называемых полуосях, которые соединяются между собой специальным механизмом — дифференциалом, подводящим к полуосям крутящий момент от главной передачи. При наличии нескольких ведущих мостов возникает необходимость применения межосевого дифференциала. В основном применяют шестеренчатые и кулачковые дифференциалы. Шестеренчатый дифференциал — планетарный механизм с двумя степенями свободы. Симметричный конический дифференциал состоит из следующих элементов: • корпуса (две чашки — левая и правая); • сателлитных зубчатых колес (два или четыре); • ось сателлитных зубчатых колес (крестовина с шипами осей); • двух полуосевых зубчатых колес. Крутящий момент с корпуса, являющегося водилом планетарного механизма, через свободно вращающиеся на своих осях сателлитные зубчатые колеса передаются на полуосевые зубчатые колеса, далее через полуоси на ступицы ведущих колес. Скорость вращения полуосей непропорционально зависит от угловой скорости корпуса дифференциала. Если такой дифференциал использовать в качестве межколесного, то при движении автомобиля угловые скорости колес будут определяться отношением пути, пройденным колесом, и их радиусом качения (при отсутствии скольжения колес). Единственное кинематическое ограничение: на сколько одна полуось обгоняет корпус, на столько другая отстает от него. В дифференциалах легковых автомобилей обычно два сателлитных зубчатых колеса, установленных на одной общей оси. В дифференциалах большегрузных автомобилей устанавливают по четыре сателлитных зубчатых колеса, а их оси объединяют. Кулачковый дифференциал повышенного трения автомобиля ГАЗ-66-11 (рис. 101) состоит из следующих элементов: • корпуса дифференциала, состоящего из левой и правой чашек; • наружной звездочки с внутренним кулачковым профилем, которая передает крутящий момент на правую полуось; • внутренней звездочки с двумя рядами кулачковых профилей на наружной поверхности, которая перелает крутящий момент на левую полуось; • сепаратора, выполненного как одно целое с левой чашкой коробки дифференциала, с двумя рядами отверстий под сухари; • двадцати четырех сухарей, расположенных в шахматном порядке в отверстиях сепаратора. Крутящий момент передается через сепаратор сухарям, которые своими торцами взаимодействуют с кулачками. Крутящий момент от сепаратора к кулачкам передают только сухари, находящиеся в сужающихся участках канавки, образованной профилями кулачков, и упирающихся в кулачки, другие сухари в этот момент не работают. Если полуоси вращаются с разными скоростями, то профили кулачков смещаются относительно друг друга, а работающие сухари, оказавшись в расширяющейся части канавки, работают вхолостую, и вместо них в работу вступают сухари, которые до этого не были задействованы.
Глава 4. Мосты 153 Рис. 101. Кулачковый дифференциал повышенного трения автомобиля ГАЗ-66-11: а — конструкция; б — детали; / — сепаратор; 2 — сухарь; 3 — наружная звездочка, соединенная с правой полуосью; 4 — внутренняя звездочка, соединенная с левой полуосью; 5 — колесо главной передачи Взаимное смещение профилей кулачков при разных угловых скоростях полуосей сопровождается скольжением сухарей относительно кулачков и сепаратора. Это скольжение, в свою очередь, сопровождается трением, величина которого обеспечивает коэффициент блокировки дифференциалов Kg = 5. При радиальном расположении сухарей коэффициент блокировки зависит от того, какая полуось является отстающей, а какая — опережающей. В двухрядном кулачковом дифференциале рабочая поверхность широкого наружного кулачка взаимодействует с двумя рядами сухарей, установленных в одном сепараторе, а рабочая поверхность внутренней звездочки состоит из двух профилей, смещенных на половину шага выступов. Высокая износостойкость кулачкового дифференциала достигается применением высококачественных легированных сталей. Межосевой дифференциал автомобиля КамАЗ-5320 (рис. 102) распределяет крутящий момент между промежуточным (средним) и задним мостами. Картер межосевого дифференциала прикреплен к картеру главной передачи промежуточного моста. Корпус дифференциала состоит из двух чашек, соединенных между собой болтами. Внутри помещен дифференциальный механизм, в который входят сателлитные зубчатые колеса с
154 Раздел IL Трансмиссия Рис. 102. Промежуточный мост с межосевым дифференциалом автомобиля КамАЗ-5320: а — конструкция; б — механизм включения блокировки; / — коническое зубчатое колесо; 2 — картер главной передачи; 3 - цилиндрическое зубчатое колесо; 4 — опорная шайба сателлита; 5 — сателлит; 6 — бронзовая втулка сателлита; 7 — полуосевое зубчатое колесо; 8 — опорная шайба полуосевого зубчатого колеса; 9 — крестовина; 10 — цилиндрическое зубчатое колесо; 11 — фланец: 12 — картер межосевого дифференциала; 13 - передняя чашка дифференциала; 14 — микровыключатель; 75 — вилка муфты блокировки; 16 — механизм включения блокировки дифференциала; 17 — коническое зубчатое колесо; 18 — вал привода заднего моста; 19 — стопор гайки; 20 — распорная втулка; 21 — муфта блокировки; 22 — внутренняя зубчатая муфта; 23 — коническое зубчатое колесо привода промежуточного моста; 24 — коническое зубчатое колесо привода заднего моста; 25 — шток; 26 — корпус; 21 — нажимная пружина; 28 — возвратная пружина; 29 - стакан штока; 30 — мембрана
Глава 4. Мосты 155 крестовиной, конические зубчатые колеса привода промежуточного моста и привода заднего моста. Зубчатое колесо привода промежуточного моста шлицами постоянно соединено с коническим зубчатым колесом главной передачи промежуточного моста. Зубчатое колесо привода промежуточного моста имеет наружные зубья, с которыми в постоянном зацеплении находятся внутренняя зубчатая муфта и муфта блокировки дифференциала. Передвигая муфту в зацепление с наружными зубьями зубчатого колеса привода промежуточного моста (соединяется с корпусом дифференциала), осуществляется блокировка дифференциала. Включение механизма блокировки осуществляется с помощью пневмоцилиндра с мембраной и пружиной, которые перемещают шток с вилкой зубчатой муфты включения блокировки. 4.7. Полуоси Полуоси (рис. 103 и 104) передают крутящий момент от полуосевого зубчатого колеса дифференциала на ступицу ведущего колеса. К полуоси Рис. 103. Полуоси: а — с фланцем и шлицевой нарезкой; б — со шлицами на обоих концах Рис. 104. Кинематические схемы полуосей: а — полуразгруженной: б — полностью разгруженной; / — колесо; 2, 6 и 7 — подшипники; 3 — кожух полуоси; 4 — полуось; 5 — ступица; ар — плечо опоры; г — радиус колеса; М — крутящий момент; Rz — изгибающий момент; Rx — касательная реакция, обусловленная тяговой и тормозной силами; Ry — боковая сила, возникающая при заносе
156 Раздел IL Трансмиссия могут быть приложены изгибающие моменты от вертикальной реакции на действие силы тяжести, приходящейся на колесо, от касательной реакции, обусловленной тяговой и тормозной силами, и от боковой силы, возникающей при заносе, а также под действием бокового ветра. Полуоси, в зависимости от конструкции внешней опоры, определяющей степень их нагруженности изгибающими моментами, бывают двух типов — полуразгруженные и разгруженные. По конструкции полуоси могут иметь на одном конце фланец для крепления болтами к ступице колеса, а на другом шлицевую часть, входящую в зацепление с полуосевым зубчатым колесом дифференциала. Другая конструкция предусматривает шлицевую часть на обоих концах полуоси. На грузовых автомобилях малой грузоподъемности и на легковых автомобилях применяют обычно полуразгруженные полуоси, у которых подшипник установлен между полуосью и кожухом на определенном расстоянии от средней плоскости колеса. Благодаря этому создаются изгибающие моменты на плече (плоскость наружной части диска и подшипника), действующие на полуось в вертикальной и горизонтальной плоскостях, в вертикальной плоскости и (боковая реакция) на плече, равном радиусу колеса. На автобусах и грузовых автомобилях средней и большой грузоподъемности применяют полностью разгруженные полуоси. В этом случае все изгибающие моменты воспринимаются подшипниками, установленными между ступицей колеса и кожухом полуоси, а полуось передает только крутящий момент. Полуоси в процессе эксплуатации автомобилей испытывают значительные нагрузки, особенно при движении по грунту и по шоссе с твердым покрытием в плохом состоянии. Поэтому к полуосям предъявляют особые требования. Снижение напряжений достигается увеличением радиусов перехода между полуосью и фланцем. Долговечность подшипников колес обеспечивается надежной защитой от попадания в них грязи.
Раздел III НЕСУЩАЯ КОНСТРУКЦИЯ Несущей конструкцией автомобиля принято называть остов, который соединяет между собой все его части. Это может быть либо отдельная конструкция, рама, на которую устанавливаются кузов и агрегаты автомобиля (двигатель, механизмы трансмиссии, ведущие и управляемые мосты, подвеска и т. п.), либо сам кузов. Раму автомобиля с установленными на ней агрегатами называют шасси. Под словом «кузов» в автостроении в большинстве случаев понимают пространство для размещения основного объекта перевозок. Несущая конструкция автомобиля воспринимает различные виды нагрузок: нагрузки, связанные с массой узлов и агрегатов, установленных на ней, а также массой пассажиров и груза, и динамические нагрузки, возникающие при движении автомобиля по неровной дороге и при изменении режимов работы двигателя. В исключительных случаях, например при дорожно-транспортных происшествиях, несущая конструкция воспринимает нагрузки аварийного характера. Основное назначение несущей конструкции состоит в объединении в единое целое всех частей автомобиля в процессе его функционирования. Требования к несущим конструкциям. Из основного назначения несущей конструкции — объединение в единое целое всех частей автомобиля — вытекают главные требования, предъявляемые к ней, — прочность и жесткость. Под прочностью понимают способность несущей конструкции воспринимать эксплуатационные нагрузки без поломок системы в целом или ее элементов, а под жесткостью — ее способность сохранять свою форму без остаточных деформаций и без недопустимых упругих деформаций при воздействии тех же нагрузок. Классификация несущих конструкций. Несущие конструкции автомобилей могут быть классифицированы по различным признакам. По способу распределения функций несущие конструкции автомобилей могут быть: • рамными (несущей конструкцией служит отдельная конструкция — рама, на которой монтируется кузов, полностью или частично освобожденный от функций несущей конструкции), такое конструктивное решение типично для грузовых автомобилей высокой проходимости; • с несущими кузовами (функции несущей конструкции выполняет кузов), это типично для большинства легковых автомобилей и автобусов.
158 Раздел III. Несущая конструкция Несущие кузова легковых автомобилей могут быть: • каркасные; • полукаркасные (скелетные); • оболочковые. Несущие кузова автобусов могут быть: • каркасными или скелетными; • с интегральным основанием. Глава 1 Несущая конструкция грузового автомобиля 1.1. Рама В качестве несущей конструкции системы грузового автомобиля чаще всего применяется рама (рис. 105). Различают лонжеронные и хребтовые рамы. Лонжеронная рама состоит из двух продольных штампованных балок швеллерного сечения — лонжеронов, связанных между собой несколькими Рис. 105. Рама автомобиля КамАЗ-5320: 1 — кронштейн крепления переднего буфера; 2 — первая поперечина; 3 — правый лонжерон; 4 — кронштейн передней опоры двигателя; 5 - удлинительная вставка лонжерона переднего моста; 6 — две половины второй поперечины; 7 — кронштейн задней опоры двигателя; 8 — кронштейн крепления поддерживающей опоры силового агрегата; 9 — две половины третьей поперечины; 10 — четвертая поперечина; 11 — удлинительная вставка лонжерона промежуточного моста; 12 — две половины пятой поперечины с усиливающими косынками; 13 — удлинительная вставка лонжерона заднего моста; 14 — шестая поперечина; 75 — раскос задней поперечины; 16 — усилительная накладка задней поперечины; 77— задняя поперечина; 18 — косынка раскоса; 19 — стяжка раскоса задней поперечины; 20 — левый лонжерон; 21 — задний кронштейн передней подвески; 22 — кронштейн крепления верхнего ушка амортизатора; 23 — кронштейн крепления водяного радиатора; 24 — передний кронштейн подвески
Глава 1. Несущая конструкция грузового автомобиля 159 поперечинами. Такая рама получила название лонжеронной. Поперечины обычно штампованные, служат не только для соединения между собой лонжеронов и придания всей конструкции необходимой жесткости, но и для крепления различных агрегатов автомобиля. Для изготовления элементов рамы обычно применяется низкоуглеродистая сталь. Соединение лонжеронов и поперечин чаще всего выполняется с помощью заклепок. В необходимых местах к лонжеронам и поперечинам, также заклепками или болтами, крепятся различные кронштейны и другие детали для установки агрегатов автомобиля. Сварка при изготовлении рам применяется довольно редко, поскольку лонжеронные рамы грузовых автомобилей относительно податливы на изгиб, ив особенности на кручение, и сварные швы в этих условиях являются источником образования трещин. Способность рамы деформироваться при скручивающихся нагрузках позволяет избежать излишне высокие напряжения в местах соединений. Кабина грузового автомобиля закрепляется на раме в трех, четырех точках с помощью упругих устройств, и деформации рамы при движении автомобиля по неровной дороге не вызывают соответствующих деформаций кабины. В редких случаях на грузовых автомобилях применяется так называемая хребтовая рама, представляющая собой стальную трубу большого диаметра, проходящую вдоль автомобиля по его продольной оси. В передней части рама раздваивается, образуя два продольных лонжерона, служащих для установки двигателя с коробкой передач. Внутри трубы размещается карданная передача. Ведущие мосты автомобиля в этом случае имеют подрессоренные редукторы, от которых крутящий момент подводится к колесам качающимися полуосями. 1.2. Тягово-сцепное устройство Тягово-сцепное устройство выполняется на усиленной задней поперечине рамы и служит для буксирования прицепов. Тягово-сцепное устройство грузовых автомобилей двустороннего действия позволяет смягчать осевые толчки, возникающие во время движения автопоезда в обоих направлениях. Тягово-сцепное устройство (рис. 106) представляет собой стальной крюк, проходящий внутри упругого резинового элемента, зажатого между двух опорных шайб. Опорные шайбы вместе с упругим элементом размещаются в массивном цилиндрическом корпусе, с одной стороны закрытом колпаком, а с другой — крышкой, которая болтами крепится к поперечине рамы. Упругий резиновый элемент смягчает ударные нагрузки при трогании автомобиля с прицепом с места при движении по неровной дороге. На крюке имеется защелка, которая застопорена собачкой и шплинтом с цепочкой, предотвращающими самопроизвольный выход дышла прицепа из зацепления с крюком. На автомобилях, не имеющих тяго-
160 Раздел III. Несущая конструкция Рис. 106. Тягово-сцепное устройство: / — колпак гайки; 2 — гайка; 3 и 14 — опорные шайбы; 4 — упругий элемент; 5 — корпус; 6 — задняя поперечина рамы; 7 — собачка; 8 — отверстие для шплинта; 9 —- ось собачки; 10 — цепочка шплинта; 11 — защелка; 12 — крюк; 13 — крышка корпуса во-сцепного устройства, устанавливают петли, предназначенные только для кратковременного буксирования автомобиля, но исключающие работу с прицепом. 1.3. Передний управляемый мост Управляемый мост (рис. 107 и 108) может быть неразрезным и разрезным. Неразрезной мост состоит из балки и поворотных кулаков, шарнирно соединенных посредством шкворней, обеспечивающих возможность поворота управляемых колес для изменения направления движения автомобиля (на цапфах поворотных кулаков на подшипниках устанавливаются управляемые колеса). Балка моста должна быть прочной, жесткой и как можно более легкой. Этим требованиям в наибольшей степени удовлетворяют стальные кованые балки двутаврового сечения. По краям балки двутавровое сечение плавно переходит в прямоугольное с отверстиями для установки шкворней поворотного кулака. Средняя часть балки выгнута вниз, с тем чтобы дать мосту свободу вертикального перемещения. Для крепления элементов подвески на балке предусмотрено наличие соответствующих опорных площадок. Шкворень поворотного кулака представляет собой стальной цилиндрический палец, неподвижно установленный в балке. Для его фиксации от поворота и осевого смещения обычно используются клиновые болты. Вертикальные нагрузки воспринимаются опорными подшипниками скольжения (подшипник качения). Для регулировки зазора между верхним торцом бобышки балки и поворотным кулаком устанавливают регулировочные прокладки. Поворот кулака относительно шкворня обеспечивается подшипниками скольжения, образованными поверхностью шкворня и запрессованными в отверстии поворотного кулака бронзовыми втулками. Разрезной передний мост устанавливают на легковых автомобилях. Он состоит из стойки, которая шарнирно соединена посредством шкворня с поворотным кулаком в средней части и шарнирно соединяется посредством верхнего и нижнего рычагов с балкой переднего моста. Для обеспече-
Глава 1. Несущая конструкция грузового автомобиля 161 00 N. <о 1С "Ч* СО С\| Рис. 107. Передние мосты автомобилей: а — ГАЗ-53-12; б — ЗИЛ-4314.10; У — колесо; 2 — тормозной барабан; J— ступица; 4, 5 и 16— подшипники; б— шпилька; 7 — гайка крепления колеса; 8 — маслоотражатель; 9 — тормозной диск; /0 — поворотный кулак; 11 — шкворень; /2 — регулировочная шайба; 13 — рычаг поворотного кулака; 14 — палец рулевой тяги; 15— стопор; 17 — балка переднего моста; 18— поперечная рулевая тяга; 19 — продольная рулевая тяга; 20 — болт ограничения поворота колес; 21 — рычаг рулевой трапеции; 22 — масленки; 23 — регулировочная гайка; 24 — замочное кольцо; 25 — гайка 6 Устройство автомобиля
162 Раздел III. Несущая конструкция Рис. 108. Передний разрезной мост автомобилей ГАЗ-24-10 и ГАЗ-3102 «Волга» (с барабанными тормозными механизмами): 1 — стопорная шайба; 2 — ступица; 3 — поворотный кулак; 4 ~ стойка; 5 — верхний рычаг; 6 — регулировочные прокладки; 7 — продольная балка рамы; 8 — балка переднего моста; 9 — нижний рычаг; 10 — шкворень ния стабилизации управляемых колес оси шкворней наклонены в продольной и поперечной плоскостях. 1.4. Установка управляемых колес Для создания наименьшего сопротивления движению, уменьшения изнашивания шин и снижения расхода топлива управляемые колеса должны катиться в вертикальных плоскостях, параллельных продольной оси автомобиля. С этой целью управляемые колеса устанавливают на автомобиле с развалом в вертикальной плоскости и со схождением в горизонтальной плоскости (рис. 109). Углом развала управляемых колес называется угол, заключенный между плоскостью колеса и вертикальной плоскостью, параллельной продольной оси автомобиля. Угол развала считается положительным, если колесо наклонено от автомобиля наружу, и отрицательным при наклоне колеса внутрь. Угол развала необходим для того, чтобы обеспечить перпендикулярное расположение колес относительно поверхности дороги при деформации деталей моста под действием веса передней части автомобиля. Этот угол уменьшает плечо поворота — расстояние между точкой пересечения
Глава 7. Несущая конструкция грузового автомобиля 163 Рис. 109. Установка передних колес и шкворней поворотных кулаков: а и б — углы наклона шкворня в поперечной и продольной плоскостях соответственно; в — угол развала колес; г — схождение колес; Л и Б — расстояние между колесами, замеряемые соответственно сзади и спереди по краям ободьев на уровне оси колеса; а — угол развала колес; у — продольный наклон шкворня; [3 — поперечный наклон шкворня; с — расстояние между точкой пересечения продолжения оси шкворня и точкой касания колеса с плоскостью дороги; h — расстояние, на которое опускается колесо из-за наклона шкворня вбок при повороте на 180°; Rn — центробежная сила; R\, Ri, Ri, R4 — реакции дороги продолжения оси шкворня и точкой касания колеса с плоскостью дороги. В результате уменьшается момент, необходимый для поворота управляемых колес, и, следовательно, облегчается поворот автомобиля. Угол развала обеспечивается конструкцией управляемого моста путем наклона поворотного кулака на 0—2° В процессе эксплуатации угол развала колес изменяется главным образом из-за износа втулок шкворней поворотных кулаков, подшипников ступицы колес и деформации балки переднего моста. При наличии угла развала колес колесо стремится катиться в сторону от автомобиля по дуге вокруг точки пересечения продолжения его оси с плоскостью дороги. Так как управляемые колеса связаны жесткой балкой моста, то качение колес по расходящимся дугам сопровождалось бы боковым скольжением. Для устранения этого явления колеса устанавливают со схождением, т. е. не параллельно, а под некоторым углом к продольной оси автомобиля. Угол схождения управляемых колес определяется разностью расстояний между колесами, которые замеряют сзади и спереди по краям ободьев на высоте оси колес. Угол расхождения колес у разных автомобилей от 0°20' до Г, а разность расстояний между колесами сзади и спереди 2—12 мм. В процессе эксплуатации углы схождения колес могут изменяться из-за из-
164 Раздел III. Несущая конструкция носа втулок шкворней поворотных кулаков, шарнирных соединении рулевой трапеции и деформации ее рычагов. Регулировку угла схождения колес производят изменением длины поперечной рулевой тяги. Установка управляемых колес с одновременным развалом и схождением обеспечивает их прямолинейное качение по дороге без бокового скольжения. Каждому углу развала должен соответствовать определенный угол схождения колес, при котором сила сопротивления движению, расход топлива и износ шин будут минимальными. Обычно оптимальный угол схождения управляемых колес составляет 15—20 % от угла их развала. Глава 2 Подвеска Подвеска осуществляет упругую связь рамы или кузова автомобиля с мостами или непосредственно с колесами, смягчая толчки и удары, возникающие при наезде колес на неровности дороги. Подвеска автомобиля (рис. 110—114) включает в себя: • упругие элементы; • направляющие устройства; • гасители колебаний; • стабилизаторы поперечной устойчивости. Требования, предъявляемые к подвескам: • оптимальная характеристика жесткости — зависимость между нормальной (перпендикулярно опорной поверхности) нагрузкой на колесо и деформацией (прогибом) подвески, измеряемая как нормальное перемещение центра колеса относительно кузова; • оптимальная кинематика; работа направляющего устройства подвески при вертикальных перемещениях, крене либо галопировании (продольные угловые колебания) кузова автомобиля вызывает не только вертикальные перемещения колес, но также боковые и угловые перемешения как относительно дороги, так и относительно кузова; • оптимальные характеристики демпфирования — гашение колебаний колес и кузова автомобиля, возникших в результате воздействия главным образом дорожных неровностей; может происходить вследствие трения в некоторых типах упругих элементов и в шарнирах направляющего устройства подвески; • минимальное число неподрессоренных частей; к ним относятся колеса и шины, тормозные механизмы колес, поворотные кулаки, стойки подвески, мосты и т. п.; • хороший контакт колеса с дорогой; при переезде автомобилем на ^большой скорости выпуклых неровностей (трамплинов) на дорожной поверхности из-за недостаточного хода отбоя подвески, либо большой ее инерционности, возможен отрыв колеса от дороги;
Глава 2. Подвеска 165 Рис. ПО. Подвески: а — зависимая; б — независимая шкворневая; в — независимая бесшкворневая; 1 — кронштейн; 2 — рессора; 3 — хомут; 4 — балка переднего моста; 5 — серьга; 6 — стремянка; 7 и 12 — рычаги; 8 — пружина; 9 — шкворень; 10 — поворотный кулак; 11 — поворотная стойка; 13 — поперечина подрамника Рис. 111. Подвеска автомобиля ГАЗ-53-12: 1. 3 и 6 — кронштейны; 2 — лонжерон; 4 — шарнир; 5 — амортизатор; 7 и 12 — обоймы концов коренных рессорных листов; 8 и 13 — верхние и нижние опоры; 9 — буфер; 10 — стремянка; 11 — двойной коренной лист; 14 — торцовый упор
166 Раздел III. Несущая конструкция 6 В Рис. 112. Подвески автомобиля ЗИЛ-4314.10: а — передняя; б — задняя; 7 и 25 ~ передние кронштейны; 2, 72, 27 и 35 — стремянки; 3 — передняя рессора; 4 — фиксатор накладки; 5 и 8 — буфера рессоры; 6 и 28 — накладки; 7— амортизатор; 0 — обойма; 10 к 33 — проставки; 77 и 32— задние кронштейны; 13 и 56 — подкладки ушек рессор; 14 и 37— ушки рессор; 75и J# — втулки ушек; 16 и 40 — пальцы рессор; /7 и JP — масленки; 7£ — резиновая втулка; 19 — палец амортизатора; 20 и 47 — сухари; 27 и 42 — пальцы сухарей; 22 и 43 — вкладыши; 2J? и 44 — втулки стяжных болтов; 24 и 45 — стяжные болты; 26 — кронштейн дополнительной рессоры; 29 — дополнительная рессора; 30 — промежуточный лист; 31 — задняя рессора; 34 — подкладка стремянок
Глава 2. Подвеска 167 А-А Рис. 113. Задняя подвеска автомобиля ГАЗ-3102 «Волга»: а — общий вид; б — крепление заднего конца рессоры; в — крепление переднего конца рессоры; / — коренной лист; 2 — второй лист рессоры; 3 и 4 — прокладки; 5 — третий лист; 6 — пластина хомута; 7 — заклепка; 8 — хомут; 9 — кронштейн; 10 — палец; 11 — дополнительный буфер; 12 — амортизатор; 13 — буфер; 14 — серьга; 75— стремянка; 16 — прокладка рессоры; 17— болт; 18 — резиновые подушки; 19 — лонжерон пола кузова; 20 — резиновые втулки; 21 — щека серьги; 22 — заднее ушко рессоры; 23 — переднее ушко рессоры; Б — крепление рессоры к мосту
168 Раздел III. Несущая конструкция Рис. 114. Балансирная подвеска промежуточного и заднего мостов: 7 и 5— штанги; 2 — рессора; J?— стремянка; 4, 6 ц 8— кронштейны; 7— ось; Р— шаровой палец; 10 — сферический вкладыш; 11 — подшипник; 12 и 14 — гайки; 13 — шайба; 75 — башмак; 16 — накладка • низкие уровень шума и вибрации; при эксплуатации автомобиля возникают скрипы из-за трения подвески в металлических шарнирах, резиновых опорах и упругих элементах и стуки в шарнирах из-за их изнашивания и образования зазоров; • рациональная компоновочная схема. 2.1. Упругие элементы подвесок Упругие элементы подвесок смягчают толчки, снижают вертикальные ускорения и динамические нагрузки, передаваемые на несущую конструкцию при движении автомобиля. В результате работы упругого элемента ис-
Глава 2. Подвеска 169 ключается «копирование» кузовом профиля дорожных неровностей и улучшается плавность хода автомобиля. Хорошей плавностью хода считается такая, при которой кузов совершает колебания частотой 1—1,3 Гц. Применяют следующие типы упругих элементов подвески: • металлические: листовые рессоры, спиральные пружины, торсионы (стержни, работающие на скручивание); • неметаллические: пневматические, гидропневматические и резиновые (обеспечивают упругость подвески за счет упругих свойств резины, воздуха и жидкости). Листовые рессоры. Рессорная подвеска является основной для грузовых автомобилей. Она содержит минимальное число структурных элементов — рессору с узлами крепления и амортизатор (не всегда). Рессора состоит из стальных листов, имеющих одинаковую ширину и различную длину выгнутой формы, собранных вместе. Кривизна листов не одинакова и зависит от их длины. Она увеличивается с уменьшением длины листов, что необходимо для плотного прилегания их друг к другу в собранной рессоре. Взаимное расположение листов в собранной рессоре обеспечивается стяжным центральным болтом или посредством специальных выдавок, сделанных в средней части листов. Кроме того, листы скреплены хомутами, которые исключают боковой сдвиг одного листа относительно другого и передают нагрузку от коренного (верхнего) листа на другие листы при обратном прогибе рессоры. Коренной лист имеет наибольшую длину. С помощью коренного листа концы рессоры крепятся к раме или кузову автомобиля. От способа крепления рессоры зависит форма концов коренного листа. Они могут быть плоскими, отогнутыми под углом 90°, загнутыми в форме ушков, со съемными коваными или литыми ушками. Рессора устанавливается вдоль автомобиля и по способу заделки и форме может быть полуэллиптическая, кантилеверная или четвертная. Полуэллиптическая рессора способна воспринимать и передавать на несущую конструкцию автомобиля не только нормальные, но и продольные и боковые реакции дороги, а также моменты от тормозного механизма или главной передачи (при ведущем мосте), следовательно, не требует специального направляющего устройства. Четвертная и кантилеверная рессоры плохо приспособлены для передачи толкающих усилий, т. е. требуют направляющих устройств. В целях уменьшения напряжений растяжения применяют профили листов специальной несимметричной формы — трапециевидного или Т-образного сечения. Рессорные профили со специальной формой сечения не только повышают долговечность листов, но и обеспечивают экономию металла. Пружины. Спиральные (витые) пружины изготовляются из прутка круглого сечения и могут быть цилиндрическими, коническими или бочкообразными. Для изготовления пружин используются рессорно-пружин- ные стали (что и для листов рессор). Энергоемкость и долговечность пружины больше, чем у листовой рессоры, а масса меньше. Но возникает необходимость в направляющем устройстве подвески, поэтому значительного
170 Раздел III. Несущая конструкция выигрыша в массе обычно не получается, хотя экономия пружинных сталей очевидна. В качестве основного упругого элемента спиральные пружины применяются главным образом для легковых автомобилей. Решаюшим фактором является удобство установки пружины соосно амортизатору или стойке подвески, либо между рычагом и кузовом. Торсионы применяются при независимой подвеске колес на многоосных автомобилях, прицепах и на некоторых легковых автомобилях. Торси- он представляет собой стальной упругий стержень, работающий на скручивание. Он может быть сплошным круглого сечения, а также составным — из круглых стержней или прямоугольных пластин. На концах торсиона имеются головки (утолщения) с нарезанными шлицами или выполненные в форме многогранника. С помощью головок торсион одним концом крепится к раме или кузову автомобиля, а другим — к рычагам подвески. Упругость связи колеса с рамой обеспечивается скручиванием торсиона. Торсионы, как пружины, требуют направляющих и гасящих устройств. Упругие пневматические элементы целесообразно применять на автомобилях, масса подрессоренной части которых меняется значительно (грузовые автомобили), или требования к плавности хода которых высоки (автобусы). Путем изменения давления воздуха в пневматическом элементе можно регулировать жесткость подвески. При этом появляется возможность регулировать высоту пола (автобусы), грузовой платформы или прицепного устройства относительно дороги либо величину дорожного просвета (при независимой подвеске). Упругие пневматические элементы изготовляются обычно в виде рези- нокордных оболочек, содержащих прорезиненный каркас из двухслойного корда диагональной конструкции. Корд выполняется обычно из синтетических нитей (нейлон, капрон и т. п.). Наружный слой оболочки изготовляется из маслостойкой, а внутренний — из воздухонепроницаемой резины Толщина оболочки 3—5 мм. Пневмобаллоны тороидальной формы бывают одно- и двухсекционными. Односекционные встречаются редко. Наиболее распространенными являются двухсекционные (двойные) пневмобаллоны, которые состоят из оболочки с двумя бортами, усиленными стальными проволочными кольцами, которыми баллон присоединяется к опорным фланцам с помощью стальных фасонных колец. В средней части оболочка перетянута стальным бандажным кольцом. Максимальное давление внутри пневмобаллона не превышает 0,8 МПа, рабочее давление — 0,3—0,5 МПа, минимальное давление не ограничивается. Упругие гидропневматические элементы. В гидропневматических элементах, также как и в пневматических, рабочим телом является газ, но под более высоким давлением (до 20 МПа), которое обеспечивается жидкостью, поскольку герметизацию резервуара с жидкостью вследствие ее более высокой вязкости осуществлять проще. Основное достоинство упругих гидропневматических элементов определяется их характеристикой жесткости — при больших коэффициентах использования объемов пневмоэле- мента и высоких давлениях газа характеристика жесткости может бьпь приближена к идеальной.
Глава 2. Подвеска 171 Гидропневматический элемент включает в себя гидравлический цилиндр с поршнем и толкателем (штоком) и упругий пневматический элемент (пневмокамеру), который размещается в самом цилиндре или отдельно от него. Упругие резиновые элементы. Резина, особенно работающая на сдвиг, обладает большой энергоемкостью. Это ее свойство можно было бы использовать, применяя резину как рабочее тело упругих элементов. Однако из-за ряда существенных недостатков в настоящее время резина применяется для упругих вспомогательных элементов (буферов), шарниров и шумо- виброизолирующих прокладок. 2.2. Направляющее устройство Направляющее устройство определяет характер движения колес, передает продольные и поперечные усилия. На раму и кузов перелается от ведущих колес тяговая сила. Для этого предусмотрено направляющее устройство подвески, которое также воспринимает и момент, стремящийся повернуть мост автомобиля в направлении, противоположном вращению колес. При торможении автомобиля через направляющее устройство на раму от колеса передается сила торможения и им же воспринимается момент, стремящийся повернуть мост в направлении вращения колес. Кроме того, через направляющее устройство передаются боковые усилия, возникающие при повороте автомобиля. По типу направляющего устройства подвески делят на две группы — зависимые и независимые. Отличительной особенностью зависимой подвески является наличие жесткой балки, связывающей левое и правое колеса, вследствие чего перемещение одного колеса в поперечной плоскости передается другому. В независимой подвеске колеса одной оси не имеют между собой непосредственно связи и подвешены одно независимо от другого. При применении независимой подвески перемещение одного колеса не вызывает перемещения другого. В качестве направляющего устройства могут использоваться рычаги (штанги). Рычаги направляющих устройств можно разделить на две группы: • работающие на растяжение, сжатие и изгиб; • испытывающие также значительные скручивающие нагрузки. Рычаги первой группы входят в состав независимых подвесок на двух продольных или поперечных рычагах и типа «качающаяся свеча». Наиболее просты и технологичны стальные штампованные сварные конструкции открытого профиля. В случае, когда нагрузки на рычаг высоки, могут применяться и коробчатые сечения, а также кованые или литые вильчатые рычаги. Рычаги, работающие и на кручение, — одинарные продольные, косые или поперечные рычаги обычно независимых подвесок задних колес испытывают сложное нагружение, воспринимая не только силы в различных режимах качения колеса, но и реактивные моменты колеса в тормозном режиме работы двигателя автомобиля. Для уменьшения изменения плоскости вращения колес под действием нагрузок они должны быть достаточно же-
172 Раздел IIL Несущая конструкция сткими как на изгиб, так и на кручение. Поэтому такие рычаги имеют замкнутые (кольцевые или коробчатые) сечения в наиболее нагруженных местах. Изготовляются они чаще всего из трубчатых или штампованных заготовок, соединяемых сваркой, либо выполняются литыми. 2.3. Гасители колебаний Гасители колебаний служат для гашения колебаний упругого элемента. При движении автомобиля в результате наезда колес на неровности дороги возникают колебания кузова и колес, которые гасятся с помощью устройства, называемого амортизатором. Его принцип действия сводится к превращению механической энергии колебаний путем трения жидкости в тепловую энергию с последующим ее рассеиванием. Применяемые на автомобилях амортизаторы делятся на телескопические (двухтрубные и однотрубные) и рычажные. Телескопические амортизаторы легче, чем рычажные, имеют развитую поверхность охлаждения, вследствие большого хода поршня при одинаковой энергоемкости работают при сравнительно невысоких давлениях рабочей жидкости (2,5—5 МПа), поэтому менее чувствительны к изнашиванию, утечкам, технологичны в производстве и хорошо компонуются на автомобиле. Двухтрубный телескопический амортизатор. Сопротивление колебаниям в нем создается в результате перекачивания жидкости через калиброванные отверстия в его клапанах. При увеличении скорости относительных перемещений моста и несущей конструкции автомобиля резко возрастает сопротивление амортизатора. Амортизаторы заполняют специальной жидкостью, вязкость которой мало зависит от температуры окружающей среды. Колебания несущей конструкции состоят из хода сжатия, когда несущая конструкция и мост сближаются, и хода отдачи, когда несущая конструкция и мост расходятся. Сопротивление амортизатора имеет двухстороннее действие. Ходы сжатия и отдачи неодинаковы. Так, сопротивление при ходе сжатия составляет 20—25 % сопротивления хода отдачи, так как необходимо, чтобы амортизатор гасил в основном свободные колебания подвески при ходе отдачи и не увеличивал жесткость упругого элемента при ходе сжатия. Рабочий цилиндр амортизатора (рис. 115 и 116) и часть окружающего его корпуса резервуара заполнены жидкостью. Внутри цилиндра помещен поршень со штоком, к концу которого приварена проушина крепления с балкой моста или рычагами колеса. Сверху рабочий цилиндр закрыт направляющей штока, а снизу днищем, являющимся одновременно корпусом клапана сжатия. В поршне по окружностям разного диаметра равномерно расположены два ряда отверстий. Отверстия на большом диаметре закрыты сверху перепускным клапаном отдачи. Отверстия на малом диаметре закрыты снизу дисками клапана отдачи, поджатого пружиной. В нижней части цилиндра запрессован корпус клапана сжатия, состоящий из перепускного клапана сжатия, дисков клапана и пружины. В корпусе клапана сжатия, аналогично клапану отдачи, имеются два ряда отвер-
Глава 2. Подвеска 173 Рис. 115. Телескопический амортизатор: / — проушина; 2 — гайка резервуара; 3 — уплотните- льная манжета штока; 4 — уплотнительная манжета обоймы; 5 — перепускной клапан отдачи; 6— отверстие наружного ряда; 7— клапан отдачи; 8, 11 и 22 — пружины; 9 — перепускной клапан сжатия; 10 — клапан сжатия; 12 — гайка; 13 — отверстие перепускного клапана; 14 — поршень; 15 — отверстие внутреннего ряда; 16— поршневое кольцо; 17 — корпус резервуара; 18 — рабочий цилиндр; 19 — шток поршня; 20 — направляющая штока; 21 — уплотнительная манжета; 23 — обойма уплотнительной манжеты; 24 — войлочные уплотнительные манжеты штока; а — отверстие для слива жидкости в резервуар; А — полость резервуара стий, расположенных по окружностям большого и малого диаметра. Отверстия на большом диаметре закрыты сверху перепускным клапаном, а отверстия на малом диаметре закрыты снизу дисками клапана сжатия. Во время плавного хода сжатия подвески шток и поршень, опускаясь вниз, вытесняют основную часть жидкости из подпоршневого пространства в надпоршневое через перепускной клапан отдачи, имеющий слабую пружину и незначительное сопротивление. При этом часть жидкости, рав-
174 Раздел III. Несущая конструкция Рис. 116. Телескопическая стойка: / — корпус клапана сжатия; 2 — диски клапана сжатия; 3 — дроссельный диск клапана сжатия; 4 — тарелка клапана сжатия; 5 — пружина; 6 — тарелка клапана отдачи; 7 — пружина перепускного клапана; 8 — плунжер; 9 — пружина плунжера; 10 — направляющая втулка штока со сливной трубкой; 11 — уплотнительное кольцо; 12 — уплотнительная манжета; 13 — опора буфера сжатия; 14 — гайка корпуса; 75 — защитное кольцо штока; 16 — уплотнительное кольцо резервуара; 17 — обойма уплотнительной манжеты; 18 — шток; 19 — тарелка перепускного клапана; 20 — поршень с кольцом; 21 — дроссельный диск клапана отдачи; 22 — диски клапана отдачи; 23 — гайка клапана отдачи; 24 — обойма клапана сжатия; 25 — пружина ная объему штока, вводимого в рабочий цилиндр через отверстия клапана сжатия, перетекает в полость резервуара. При резком ходе сжатия и большой скорости движения поршня от большого давления жидкости клапан сжатия открывается на большую величину, преодолевая сопротивление пружины, вследствие чего уменьшается сопротивление протеканию жидкости. Во время хода отдачи поршень движется вверх и сжимает жидкость, находящуюся под поршнем. Перепускной клапан отдачи закрывается, и жидкость через внутренний ряд отверстий и клапан отдачи перетекает в пространство под поршнем. Необходимое сопротивление амортизатора создается жесткостью пружины дискового клапана отдачи. При этом часть жидкости, равная объему штока, выводимого из цилиндра, через отверстия
Глава 2. Подвеска 175 наружного ряда и перепускной клапан сжатия из резервуара перетекает в рабочий цилиндр. При резком ходе отдачи жидкость открывает клапан отдачи на большую величину, преодолевая сопротивление своей пружины. Сопротивление амортизатора определяется размерами отверстий в корпусах клапанов отдачи и сжатия и усилиями их пружин. Однотрубный амортизатор. В отличие от двухтрубного однотрубный амортизатор не имеет отдельного цилиндрического корпуса, его функции выполняет рабочий цилиндр. Поскольку шток, перемещающий поршень, вдвигаясь в цилиндр при ходе сжатия и выдвигаясь из него при отбое, изменяет объем пространства, предназначенный для жидкости, для компенсации изменения этого объема в однотрубном амортизаторе имеется специальная камера, заполненная сжатым газом (давление до 3 МПа), расположенная в глухом конце рабочего цилиндра. Данные амортизаторы также называют газонаполненными. Для того чтобы газ не смешивался с жидкостью, его изолируют от жидкости поршнем либо мембраной (реже). При конструкции, когда вся используемая жидкость постоянно находится в рабочем цилиндре и не сообщается с внешним резервуаром, как в двухтрубных амортизаторах, все отверстия и клапаны, через которые происходит прокачивание жидкости, выполняются в основном поршне амортизатора. В поршне имеется два ряда сквозных косо расположенных отверстий. Внутренние отверстия закрыты сверху клапаном сжатия, а снизу клапаном отбоя. Клапаны имеют одинаковые конструкции, но могут отличаться характеристиками открытия. Они состоят из нескольких стальных дисков одинаковой толщины, собранных в пакет, и прижаты к торцам поршня с помощью гайки на конце штока под поршнем. В прилегающих к поршню дисках в местах выхода отверстий внутреннего ряда выполнены калиброванные просечки, благодаря которым, между торцом поршня и вторым цельным диском клапана образуются калиброванные щели, через которые прокачивается жидкость в дроссельном режиме работы амортизатора. По мере увеличения скорости протекания жидкости через отверстия в поршне, которая пропорциональна скорости перемещения штока амортизатора, давление жидкости на клапан увеличивается, диски клапана плавно изгибаются, постепенно увеличивая проходные сечения отверстий. В однотрубных амортизаторах весь объем жидкости, перетекающей из одной рабочей полости в другую, подвергается дросселированию. Однотрубные амортизаторы имеют следующие преимущества перед двухтрубными: • лучшее охлаждение жидкости, так как обдуву подвергается непосредственно рабочий цилиндр; • при хорошем уплотнении газовой камеры не возникает эмульсирование жидкости, следовательно, характеристики амортизатора более стабильные; • однотрубные амортизаторы можно устанавливать на автомобиле под любым углом, в том числе и штоком вниз, в последнем случае уменьшается величина массы неподрессоренных частей.
176 Раздел III. Несущая конструкция К недостаткам однотрубных амортизаторов можно отнести: • их относительно высокую стоимость из-за более сложной технологии изготовления; • большая длина из-за наличия газовой камеры при одинаковом ходе штока (в сравнении с двухтрубным амортизатором). 2.4. Стабилизатор поперечной устойчивости Одним из способов уменьшения крена кузова и улучшение показателей управляемости автомобиля является применение упругих дополнительных элементов, называемых стабилизаторами поперечной устойчивости. Применяются они в подвесках легковых автомобилей и автобусах. Стабилизатор поперечной устойчивости (рис. 117) представляет собой упругое специальное устройство торсионного типа, которое устанавливается поперек автомобиля. Он состоит из П-образного стержня круглого сечения, изготовленного из пружинной стали и плечей (стоек). Стержень подвижно (во втулках) крепится на раме или кузове, а плечами шарнирно соединяется с мостом или рычагами подвески. При боковых кренах и поперечных угловых колебаниях кузова концы (плечи) стержня стабилизатора перемещаются в разные стороны один опускается, другой поднимается. Вследствие этого средняя часть стержня закручивается и частично изгибается, уменьшая тем самым крен и поперечное раскачивание кузова автомобиля. Создавая сопротивление крену и поперечным колебаниям кузова, стабилизатор в то же время не препятствует его вертикальным и продольным угловым колебаниям. При вертикальных перемещениях кузова прогибы подвесок одинаковы, перемещения плеч стабилизатора также одинаковы и скру- Рис. 117. Стабилизатор поперечной устойчивости автомобиля ГАЗ-24 «Волга»: а — кинематическая схема; б — конструкция; / — штанга ; 2 — втулка; 3 и 5 — подушки; 4 — стойка
Глава 2. Подвеска 177 чивания стержня не происходит: он только проворачивается в опорных втулках. В этом случае стабилизатор практически не влияет на характеристику подвески. 2.5. Зависимые подвески Зависимая подвеска широко применяется в грузовых автомобилях, автобусах и легковых автомобилях (задняя подвеска). В большинстве случаев грузовые автомобили и автобусы имеют направляющее устройство, совмещенное с упругим элементом, в виде продольных полуэллиптических листовых рессор. Передняя подвеска грузового автомобиля ГАЗ-53-12 (см. рис. 111) состоит из двух продольных полуэллиптических листовых рессор, расположенных под лонжеронами рамы вдоль автомобиля. Концы сдвоенного коренного листа рессоры закреплены с помощью резиновых опор в прикрепленных к лонжерону кронштейнах. Концы одного коренного листа отогнуты вверх, а другого — вниз, вследствие чего образуется упорная торцевая поверхность. Концы листов охвачены обоймами, увеличивающими площадь давления рессоры на резиновые опоры, что уменьшает их изнашивание. Рессора собрана из стальных листов разной длины, которые стянуты вместе хомутами и прикреплены к переднему мосту двумя стремянками. С помощью этих же стремянок к верхней части рессоры крепятся резиновый буфер, смягчающий удары при максимальных прогибах рессоры. В переднюю подвеску входит также гидравлический телескопический амортизатор, который с помощью резинометаллических шарниров соединяет передний мост и кронштейн лонжерона рамы. Задняя подвеска автомобиля ГАЗ-53-12 имеет две основные рессоры с дополнительными рессорами (подрессорниками), расположенными вдоль лонжеронов рамы в задней части автомобиля. Основная задняя рессора прикреплена к раме, так же как и передняя рессора, с помощью нижней и верхней резиновых опор. Передний конец рессоры упирается в дополнительный торцевой упор. Нагрузка на дополнительную рессору передается через кронштейны, закрепленные на лонжеронах. У ненагруженного автомобиля при небольшом прогибе задних рессор силы передаются только основными рессорами, а между кронштейнами дополнительной рессоры и ее концами остается зазор, уменьшающийся по мере увеличения нагрузки. При полной нагрузке в работу вступает дополнительная рессора, упругость которой может меняться, так как концы верхнего листа рессоры скользят по выпуклым опорам и длина рабочей части рессоры по мере ее прогиба уменьшается. Боковое смещение листов основной рессоры предотвращают четыре хомута, а дополнительной — два хомута. Основная и дополнительная рессоры соединены с задним мостом с помощью накладки и стремянок. Для повышения долговечности листы рессор подвергаются дробеструйной обработке. Большое трение между рессорными листами делает подвеску излишне жесткой, поэтому все листы передних и задних рессор смазываются графитовым смазочным материалом, уменьшающим трение и предохраняющим их от коррозии.
178 Раздел IIL Несущая конструкция В некоторых автомобилях рессоры крепятся по-другому — на их передних концах с помощью болтов и стремянок закрепляются съемные ушки, которыми рессоры закреплены в кронштейнах пальцами. Задние рессоры могут свободно перемешаться между опорными сухарями и втулками в кронштейнах, В задней зависимой подвеске ведущего моста легковых автомобилей (рис. 118 и 119) упругим элементом служат спиральные пружины, установленные в чашках на балке моста и через резиновые виброизолирующие прокладки на кузове. Ограничители хода сжатия установлены соосно пружинам. Имеется дополнительный резиновый буфер, предотвращающий жесткие удары передней части картера главной передачи о кузов при больших прогибах подвески в сочетании с поворотом моста, благодаря податливости резиновых втулок крепления штанг при интенсивном разгоне автомобиля. Направляющим устройством являются две верхние, две нижние и поперечная штанги (тяги), установленные между мостом и кузовом и закрепленные в резинометаллических шарнирах. Продольные штанги, работая совместно, воспринимают продольные силы. Поперечная штанга уравнове- Рис. 118. Задняя подвеска: 1 — распорная втулка; 2 — резиновая втулка; 3 — нижняя продольная штанга; 4 — нижняя изолирующая прокладка пружины; 5 — нижняя опорная чашка пружины; 6 — буфер хода сжатия; 7 — болт крепления верхней продольной штанги; 8 — кронштейн крепления верхней продольной штанги; 9 — пружина подвески; 10 — верхняя чашка пружины; 11 — верхняя изолирующая прокладка пружины; 12 — опорная чашка пружины; 13 — тяга рычага привода регулятора давления; 14 — резиновая втулка проушины амортизатора; 15 — поперечина пола кузова; 16 — дополнительный буфер хода сжатия; 17 — верхняя продольная штанга; 18 — кронштейн крепления поперечной штанги к кузову; 19 — кронштейн крепления продольной штанги к кузову; 20 — регулятор давления задних тормозных механизмов; 21 — рычаг привода регулятора давления; 22 — обойма опорной втулки рычага; 23 — опорная втулка рычага; 24 — поперечная штанга; 25 — амортизатор
Глава 2. Подвеска 179 Рис. 119. Установка задней подвески: 1 — лонжерон кузова; 2 — кронштейн поперечной штанги; 3 — балка заднего моста шивает только боковые силы. Верхние штанги короче нижних, причем длины штанг и их соотношение подобраны таким образом, чтобы обеспечить стабильную работу заднего карданного шарнира и шлицевого соединения карданного вала. Верхние и нижние штанги наклонены относительно друг друга так, что их оси пересекаются перед осью колес, образуя мгновенный центр продольного качения подвески, что обеспечивает при торможении автомобиля «антиклевковый эффект». Амортизаторы установлены с наклоном во внутрь в поперечной и вертикальной плоскостях и оказывают некоторое сопротивление относительному перемещению моста и кузова под действием боковых сил. Задняя подвеска трехосного автомобиля. В трехосных автомобилях для промежуточного и заднего расположенных близко ведущих мостов применяют балансирную подвеску (см. рис. 114), образованную качающимися реактивными штангами и рессорами. Средние части левой и правой рессор скреплены с башмаками рессор стремянками и накладками. Башмак вместе с рессорой может качаться на оси, запрессованной в кронштейне, который жестко связан с рамой. Концы рессор могут свободно скользить в опорах. Шесть реактивных штанг шарнирно связаны с реактивными рычагами, закрепленными на лонжеронах рамы и ведущих мостах. Рессоры при такой подвеске воспринимают только силу тяжести автомобиля, тяговые усилия и усилия, возникающие при торможении, а реактивный и тормозной моменты передаются реактивными штангами. 2.6. Независимые подвески Независимые подвески (см. рис. 110, б и в) получили широкое распространение в передних управляемых колесах легковых автомобилей, так как при их использовании существенно улучшается возможность компоновки
180 Раздел IIL Несущая конструкция моторного отсека или багажника и снижается возможность возникновения автоколебания колес. В качестве упругого элемента в независимой подвеске обычно применяют пружины, несколько реже — торсионы и другие элементы. При этом расширяется возможность применения пневматических элементов. Упругий элемент, за исключением рессоры, практически не влияет на функции направляющего устройства. Для независимых подвесок существует множество схем направляющих устройств, которые классифицируются по числу рычагов и расположению плоскости качания рычагов. В независимой передней подвеске рычажного типа автомобилей «Волга» ступица колеса установлена двумя радиально-упорными коническими роликоподшипниками на цапфе поворотного кулака, который шкворнем соединен со стойкой. Между стойкой и поворотным кулаком установлен упорный шарикоподшипник. Стойка резьбовыми втулками шарнирно соединена с верхним и нижним вильчатыми рычагами, которые, в свою очередь, связаны с осями, закрепленными на поперечинах рамы с помощью резиновых втулок. Упругим элементом подвески служит пружина, упирающаяся верхним концом через виброизолирующую прокладку в штампованную головку поперечины, а нижним — в опорную чашку, прикрепленную болтами к нижним рычагам. Вертикальные перемещения колес ограничены упором резиновых буферов в балку. Телескопический гидравлический амортизатор двустороннего действия установлен внутри пружины и соединен верхним концом с поперечной рамой через резиновые подушки, а нижним концом — с нижними рычагами. В последнее время широкое распространение получила подвеска типа «качающаяся свеча» (подвеска Мак—Ферсон). Она состоит из одного рычага и телескопической стойки, с одной стороны жестко связанной с поворотным кулаком, а с другой — закрепленной в пяте. Пята представляет собой упорный подшипник, установленный в податливом резиновом блоке, закрепленном на кузове. Стойка имеет возможность покачиваться за счет деформации резинового блока и поворачиваться вокруг оси, проходящей через упорный подшипник и наружный шарнир рычага. К преимуществам данной подвески можно отнести небольшое число деталей, меньшую массу и пространство в моторном отсеке или багажнике. Обычно стойка подвески объединяется с амортизатором, а упругий элемент (пружина, пневмоэлемент) устанавливается на стойке. К недостаткам подвески Мак—Ферсон следует отнести повышенный износ направляющих элементов стойки при больших ходах подвески, ограниченные возможности варьирования кинематических схем и большой уровень шума (по сравнению с подвеской на двух поперечных рычагах). Подвеска с качающейся амортизационной стойкой имеет кованый рычаг, к которому через резиновые подушки присоединено плечо стабилизатора. Поперечная часть стабилизатора резиновыми подушками и стальными скобами крепится к поперечине кузова. Таким образом, диагональное плечо стабилизатора передает на кузов продольные усилия со стороны колеса и, следовательно, составляет часть интегрированного рычага направляющего устройства подвески. Резиновые подушки позволяют компенсировать перекосы, возникающие при качании такого состав-
Глава 2. Подвеска 181 ного рычага, а также гасят продольные вибрации, передаваемые от колеса на кузов. Шток телескопической стойки закреплен на нижнем основании резинового блока верхней пяты и не поворачивается вместе со стойкой и установленной на ней пружиной. В таком случае при любых поворотах управляемых колес стойка также поворачивается относительно штока, снимая трение покоя между штоком амортизатора и его направляющей, поршнем амортизатора и цилиндром, что улучшает реагирование подвески на малые дорожные неровности. Пружина устанавливается не соосно стойке, а наклонена в сторону колеса для того, чтобы уменьшить поперечные нагрузки на штоке, его направляющей и поршне, возникающие под воздействием вертикального усилия на колесе. Особенностью подвески управляемых колес является то, что она должна позволять колесу совершать повороты независимо от прогиба упругого элемента. Это обеспечивается с помощью так называемого шкворневого узла. Подвески могут быть шкворневыми и бесшкворневыми. При шкворневой подвеске поворотный кулак закреплен на шкворне, который установлен с некоторым наклоном к вертикали на стойке подвески. Для уменьшения момента трения в этом шарнире могут применяться игольчатые, радиальные и упорные шариковые подшипники качения. Наружные концы рычагов подвески связаны со стойкой цилиндрическими шарнирами, обычно выполненными в виде смазываемых подшипников скольжения. Основным недостатком шкворневой конструкции является большое число шарниров. При качании рычагов направляющего устройства в поперечной плоскости невозможно достичь «антиклевкового эффекта» из-за наличия центра продольного крена подвески, так как оси качания рычагов должны быть строго параллельны. Гораздо больше распространены бесшкворневые независимые подвески, где цилиндрические шарниры стойки заменены сферическими. В конструкцию данного шарнира входит палец с полусферической головкой, на него надет металлокерамический опорный вкладыш, работающий по сферической поверхности корпуса шарнира. Палец опирается на вкладыш из специальной резины с нейлоновым покрытием, установленный в специальной обойме. Корпус шарнира крепится к рычагу подвески. При повороте колеса палец поворачивается вокруг своей оси во вкладышах. При прогибах подвески палец совместно с вкладышем качается относительно центра сферы — для этого в корпусе имеется овальное отверстие. Этот шарнир является несущим, так как через него передаются вертикальные силы от колеса к упругому элементу, пружине, опирающейся на нижний рычаг подвески. Рычаги подвески крепятся к кузову либо посредством цилиндрических подшипников скольжения, либо с помощью резинометаллических шарниров, работающих за счет деформации сдвига резиновых втулок. Последние требуют смазывания и обладают виброизолирующим свойством.
182 Раздел IIL Несущая конструкция Глава 3 Колеса и шины Колесо — устройство, осуществляющее непосредственную связь автомобиля с дорогой и обеспечивающее движение автомобиля, его подрессо- ривание, изменение направления движения и передачу вертикальных нагрузок на дорогу. В зависимости от выполняемых функций колеса делятся на ведущие, управляемые, комбинированные (ведущие и управляемые) и поддерживающие. В ведущих колесах крутящий момент, подводимый от двигателя через трансмиссию, преобразуется в силу тяги. Вращение колеса преобразуется в поступательное движение автомобиля. В ведомых колесах, воспринимающих толкающее усилие от рамы, поступательное движение автомобиля преобразуется в качение. Автомобильное колесо состоит из пневматической шины, обода, диска и ступицы. Пневматическая шина (рис. 120) является наиболее важным элементом колеса. При качении жесткого колеса по твердой дороге его ось «копирует» профиль дороги. Удары колеса о неровности дороги полностью передаются колесом подвеске. Иной характер имеет качение колеса по жесткой дороге на пневматической шине. В нижней части и особенно в месте контакта эластичная шина деформируется. При этом небольшие неровности увеличивают деформацию шины и не влияют на положение колеса. Значитель- Рис. 120. Основные элементы покрышки автомобильной шины: а — камерная шина в сборе; б — конструкция покрышки; в —- вентиль камеры; г — основные размеры покрышки; / - ободная лента; 2 — камера; 3 — сердечник; 4— боковина; 5 — подушечный слой (брекер); 6- протектор; 7 — каркас; 8 — беговая дорожка; 9 — боковая стенка; 10 — борт шины; 11 — колпачок-ключ; 12 — золотник; 13 — втулка; 14 — клапан; 15 — стержень; 16 — пружина; 77- корпус; 18 — гайка; 19 — шайбы; 20 — фланец; В — ширина шины; d — посадочный диаметр
Глава 3. Колеса и шины 183 ные неровности и сильные толчки вызывают не только увеличенную деформацию шины, но и плавное перемещение оси колеса. Такая способность пневматической шины плавно изменять характер воздействия дороги на ось колеса называется ее сглаживающей, или нивелирующей, способностью. Сглаживающая способность обеспечивается упругими свойствами сжатого воздуха, находящегося в шине. В процессе качения шина деформируется. При этом деформируется материал, из которого она изготовлена, происходит взаимное смещение отдельных ее составных частей (нитей, слоев каркаса, камеры и т. д.). Возникающая при этом работа сил внутреннего и внешнего трения приводит к выделению теплоты, нагревающей шину. При длительном движении с высокими скоростями нагрев шины может быть значительным, давление воздуха в ней повышается. Нагрев отрицательно сказывается на основных ее свойствах. Таким образом, давление воздуха в шине влияет на ее упругие, сглаживающие, поглощающие и другие свойства. Обычно номинальное давление в шинах легковых и грузовых автомобилей малой грузоподъемности составляет 0,18—0,27 МПа, а грузовых автомобилей, автобусов и их прицепов — 0,5—0,7 МПа. На автомобилях повышенной и высокой проходимости устанавливаются пневмосистемы, с помощью которых можно в зависимости от дорожных условий дистанционно регулировать давление в шинах от 0,5 до 0,35 МПа. 3.1. Шина Назначение шины — поглощать и смягчать толчки и удары, воспринимаемые колесом от дороги, обеспечивать с ней достаточное сцепление, снижать уровень шума, возникающий при движении автомобиля и уменьшать разрушающее действие автомобиля на дорогу. Требования, предъявляемые к шинам. 1. Обеспечение высокой комфортабельности — шина и подвеска, работая последовательно в вертикальном направлении, обеспечивают требуемую частоту собственных колебаний подрессоренной части конструкции. Помимо этого, влияние шины на комфортабельность автомобиля определяется следующим: • уровнем шума при прямолинейном и криволинейном движении; • сопротивлением повороту управляемых колес; • радиальным и боковым биениями, которые передаются на рулевое управление. 2. Обеспечение безопасности движения — реализация этого требования в основном определяется прочностью каркаса шины, способного противостоять действию внутреннего давления и ударным нагрузкам. Безопасность шины определяется следующими ее свойствами: • устойчивостью прямолинейного движения; • способностью двигаться с высокими скоростями без опасности возникновения сильных вибраций и разрушения;
184 Раздел III Несущая конструкция • хорошими сцепными свойствами как в продольном, так и в боковом направлениях, а также на дорогах с мокрым, загрязненным, заснеженным и обледенелым покрытиями. 3. Высокие экономические показатели — экономичность шины определяется ее стоимостью и эксплуатационными затратами. 4. Удобство компоновки (с позиции размещения колес и шин на автомобиле они должны иметь минимально допустимые размеры) заключается в следующем: • уменьшается высота и ширина колесной ниши, что позволяет увеличить объем салона, моторного отсека и багажного отделения легкового автомобиля или улучшить планировку салона автобуса; • уменьшается высота легкового автомобиля; • уменьшается высота пола автобуса или положение грузовой платформы грузового автомобиля, что важно для ускорения погрузки и выгрузки; • уменьшается пространство, занимаемое запасным колесом. В настоящее время на легковых автомобилях применяются колеса диаметром обода не менее 13" (дюймов), а на грузовых — 18й Покрышка шины воспринимает давление сжатого воздуха, находящегося в камере, предохраняет камеру от повреждений и обеспечивает сцепление колеса с дорогой. Покрышка состоит из протектора, подушечного слоя (брекера), каркаса, боковин и бортов с сердечниками. Каркас является основой покрышки, соединяя все ее части в одно целое. Каркас изготовляется из одного или нескольких слоев специальной прорезиненной кордной ткани (корда) толщиной 1—1,5 мм. В зависимости от типа и назначения шины корд может быть хлопчатобумажным, вискозным, капроновым, нейлоновым и металлическим. Число слоев корда в каркасе с учетом их равнопрочности может быть: 2—6 для шин легковых автомобилей; 4—14 для шин грузовых автомобилей и автобусов. Число слоев корда определяет прочность каркаса и допустимую нагрузку на шину. Боковина шины представляет собой слой резины, привулканизирован- ный к каркасу и защищающий его от вредных воздействий окружающей среды и механических повреждений. Боковины должны быть достаточно тонкими и гибкими, для того чтобы хорошо противостоять циклическому изгибу и оказывать малое влияние на изгибную жесткость каркаса. Толщина боковины 1,5—3,5 мм у обычных шин и до 10 мм у арочных. На нижней поверхности боковины формируется монтажный поясок в виде концентричных резиновых колец, которые позволяют проконтролировать правильность посадки борта шины на полку обода при монтаже. В верхней части боковины имеется защитный поясок в виде также концентричных, но более массивных колец. Они служат для защиты от повреждений при боковых наездах на бордюрный камень и т. п. Протектор (рис. 121) обеспечивает сцепление шины с дорогой и предохраняет каркас от повреждения. Его изготовляют из прочной, твердой, износостойкой резины. В нем различают расчлененную часть (рисунок) и подканавочный слой, который составляет 20—40 % толщины протектора в
Глава 3. Колеса и шины 185 г) д) Рис. 121. Рисунки протекторов: а — дорожный; б — универсальный; в — повышенной проходимости; г ~ карьерный; д — зимний целом. Толщина протектора шин легковых автомобилей — 10—15 мм, грузовых и автобусов — 15—30 мм. Между каркасом и протектором располагается подушечный слой (брекер). Он представляет собой резиновый или резинокордный слой и служит для усиления каркаса и улучшения связи каркаса с протектором. Брекер смягчает воздействие на каркас ударных нагрузок и способствует более равномерному распределению по каркасу окружных и поперечных сил, возникающих при взаимодействии колеса с дорогой. Борта надежно укрепляют покрышку на ободе. Снаружи борта имеют один-два слоя прорезиновой ленты, предохраняющей их от истирания об обод и от повреждений при монтаже и демонтаже шины. Внутри бортов имеются стальные проволочные сердечники, которые увеличивают прочность бортов, предохраняют их от растягивания и предотвращают соскакивания шины с обода колеса. Шина с поврежденным сердечником не пригодна для эксплуатации. Шины различают по назначению, геометрическим параметрам, конструктивным признакам и эксплуатационным характеристикам. По назначению различают шины: • для легковых автомобилей; • для грузовых автомобилей и автобусов; • для автомобилей повышенной и высокой проходимости; • для специальных машин.
186 Раздел IIL Несущая конструкция В зависимости от дорожного покрытия и его состояния они различаются по типу рисунка протектора: • дорожные (для дорог с усовершенствованным покрытием); • универсальные (для дорог с различным покрытием); • повышенной проходимости; • карьерные. Учитывая различное состояние покрытия в зависимости от времени года шины бывают: • летние (со стандартным дорожным рисунком); • для грязи и снега; • для грязи, снега и льда. Основными параметрами шины являются: • В ~ ширина профиля; • Н — высота профиля; • d — посадочный диаметр; • А — посадочная ширина (обода). В зависимости от ширины профиля шины подразделяются на: • крупногабаритные (В> 350 мм); • среднегабаритные (200 < В < 350 мм); • малогабаритные {В < 200 мм). Отношение высоты профиля шины к ее ширине (Н/В), выраженное в процентах, определяет серию шины, т. е. серия 70 означает, что Н/В = 0,7. Классификация шин по профилю приведена в табл. 2. Таблица 2. Классификация шин по профилю (ГОСТ 22374—77) Тип шины Обычная Широкопрофильная Низкопрофильная Сверхнизкопрофильная Арочная Пневмокаток Н/В Свыше 0,89 От 0,6 до 0,9 От 0,7 до 0,88 Не более 0,7 От 0,39 до 0,5 От 0,25 до 0,39 А/В От 0,65 до 0,76 | От 0,76 до 0,86 От 0,69 до 0,76 От 0,69 до 0,76 От 0,9 до 1 От 0,9 до 0,1 Конструктивные параметры шин: • конструкция каркаса — диагональная или радиальная, число слоев корда в каркасе; • материал, из которого изготовлен корд каркаса; • конструкция брекера — число слоев корда, сплошной по ширине или расчлененный, наличие прокладок между слоями брекера; • материал, из которого изготовлен корд брекера; • конструкция протектора — высокий или низкий, тип рисунка протектора;
Глава 3. Колеса и шины 187 • способ герметизации — камерная или бескамерная; • наличие специальных устройств, повышающих безопасность шины при ее разгерметизации. Эксплуатационные параметры шин: • максимальная скорость качения; • максимальная допустимая радиальная нагрузка; • рекомендуемое внутреннее давление воздуха. По конструкции шины могут быть диагональные, радиальные и диагонально опоясанные. Диагональными называются шины, у которых нити корда в смежных слоях каркаса скрещиваются (проходят по диагонали) и наклонены к линии экватора в верхней части протектора на 30—38° В этом случае для уравновешивания сил, действующих в нитях, число слоев в каркасе должно быть четным. При качении шины происходит ее деформация, сопровождаемая изменением формы профиля в различных радиальных сечениях. Поскольку кордные нити имеют высокую жесткость на растяжение, то благодаря податливости связующей их резины углы взаимного расположения нитей в смежных слоях каркаса меняются. При деформации резины из-за присущего ей большого внутреннего трения выделяется теплота, шина нагревается. При этом снижается долговечность шины из-за температурного старения резины и нитей корда и увеличивается сопротивление ее качению вследствие совершаемой внутри шины большой работы сил трения. Радиальная шина — здесь нити корда лежат практически в радиальных плоскостях, проходящих через ось колеса. При этом угол наклона к линии экватора в верхней части протектора составляет 85—90° Если в каркасе два или более слоев корда, то близлежащие нити в смежных слоях почти параллельны. Такое расположение нитей улучшает условия их работы, так как уменьшаются деформации сжатия и сдвига резины между нитями и, следовательно, меньше по сравнению с диагональным каркасом работа сил трения и разогрев шин. Поэтому каркас радиальной шины имеет больший срок службы. Диагонально опоясанные шины представляет собой конструктивный компромисс между диагональными и радиальными шинами. Они имеют диагональный каркас и нерастяжимый брекерный пояс. При этом число слоев корда в каркасе меньше, чем у диагональных шин, а в брекере — меньше чем у радиальных, хотя они имеют подобные конструкции. Диагонально опоясанные шины сочетают в себе свойства диагональной и радиальной шин. Камеры. Герметичность камерных шин обеспечивается камерой — то- рообразной эластичной оболочкой с вентилем для заполнения ее воздухом. Наружный диаметр камеры несколько меньше внутреннего диаметра шины, внутренний диаметр — больше диаметра обода по ручью. Благодаря этому камеру можно установить в шине без складок и после накачивания ее воздухом она равномерно плотно прижимается к шине и ободу, что предотвращает ее истирание. Камеры изготовляются из прочной эластичной резины с большим содержанием каучука. Маркируются камеры по поса-
188 Раздел IIL Несущая конструкция дочному диаметру обода и диапазону ширины профиля шин, для которых она предназначена. Вентиль. Для накачивания воздухом камера снабжена вентилем (см. рис. 120, в), который либо привулканизирован к камере, либо крепится с помощью зажима. Основными элементами вентиля являются ключ-колпачок, золотник, уплотнительная манжета на втулке золотника, клапан с направляющим стержнем, корпус, пружина клапана, направляющая чашечка стержня клапана. Устройство золотников всех типов вентилей одинаково. Клапан золотника может открываться нажатием на его стержень. Детали вентиля имеют специальную вентильную резьбу, которая обеспечивает легкое свинчивание деталей вручную и одновременно обладает достаточным сопротивлением самоотворачиванию при работе в условиях вибрации и ударных нагрузок. Ободная лента шины предохраняет камеру от повреждений и трения об обод колеса и борта покрышки. Она выполнена из резиновой профилированной ленты и имеет форму кольца, внутренний диаметр которого несколько больше диаметра обода колеса. Толщина ленты в средней части составляет 3—10 мм и уменьшается к краям до 1 мм. Ободная лента устанавливается между ободом колеса и камерой шины. Бескамерные шины. Герметизирующие функции в такой шине выполняет слой резины толщиной 1,5—3,6 мм определенного состава, покрывающий внутри каркас и борта. Обод для такой шины должен быть герметичным. Вентиль герметично закрепляется в отверстии обода. Борта шины плотно прилегают к полкам обода благодаря большему сборочному натягу, а также к его закраинам — под действием внутреннего давления. Носки бортов имеют специальную форму. Бескамерные шины имеют рял преимуществ перед камерными, а именно: • обладают меньшим внутренним трением вследствие отсутствия камеры, поэтому испытывают меньшее сопротивление качению и меньше нагреваются; • более безопасны в случае прокола, так как застрявший в шине колючий предмет обволакивается герметизирующим слоем, а небольшое сквозное отверстие практически затягивается резиной этого слоя; • более просты в ремонте при небольших повреждениях, так как в этом случае применяются резиновые пробки и герметизирующие пасты; • их монтаж менее трудоемок, так как отсутствует камера; • допускается эксплуатация бескамерных шин с камерой. 3.2. Обозначение шин Европейская экономическая комиссия в сотрудничестве с технической организацией европейских производителей шин и ободьев в 1975 г. приняла Правило ЕЭК ООН, определяющее типовые испытания шин и их дополнительные обозначения, необходимые для проведения этих испытаний.
Глава 3. Колеса и шины 189 Согласно принятым международным правилам и Правилу 30 ЕЭК ООН, обозначение шин строится следующим образом: • ширина профиля шины в дюймах/миллиметрах для диагональных конструкций или только в миллиметрах для радиальных шин; • через знак «/» серия шины; • знак «—»; • посадочный диаметр в дюймах; • индекс грузоподъемности; • индекс скорости. Согласно приведенному перечню, обозначение шины выглядит следующим образом: • 6,15/155—13 75 Р — для диагональной; • 155/70—13 78 S — для радиальной. Индекс грузоподъемности — условное целое число, соответствующее максимальной грузоподъемности в килограммах или тоннах. Базовая скорость — максимальная скорость шины, соответствующая оптимальной нагрузке на нее. В случае необходимости на шину наносят дополнительные обозначения в виде надписей, например, со следующей информацией: • тип каркаса шины: RADIAL — радиальный; • бескамерная шина: TUBELESS; • материал корда и число его слоев в каркасе: 2 PLIES RAYON 2 слоя вискозного корда; • для радиальных шин может быть описан состав брекера: TREAD 4 PLIES (2 PLIES RAYON + 2 PLIES STEEL) - пояс из четырех слоев (2 вискозных слоя + 2 стальных слоя); • фирма-изготовитель; • обозначение рисунка протектора; • обозначение «М & S» — для зимних шин. 3.3. Колеса Колесо состоит из обода и соединительного элемента, с помощью которого оно соединяется со ступицей. Соединительный элемент обычно представляет собой профилированный диск, приваренный к ободу, либо является непосредственной частью обода — бездисковые. Требования, предъявляемые к колесам: • прочность и долговечность; • размеры и жесткость колеса должны обеспечивать надежную посадку шины на ободе и не снижать срок ее службы; • конструкция крепления колеса должна обеспечивать его быструю и точную установку на ступице; • минимальное биение и дисбаланс колеса при вращении на ступице; • минимальный момент инерции.
190 Раздел III. Несущая конструкция В случае применения бескамерных шин к колесу предъявляются дополнительные требования: • герметичность обода; • одинаковые посадочные размеры для бескамерной и камерной шин одного и того же размера; • возможность применения камеры. Классификация колес. Колеса различают по классам, видам и типам. По эксплуатационному назначению транспортных средств колеса имеют следующую классификацию: • класс 1 — для внутризаводского транспорта (автопогрузчики, электрокары); • класс 2 — для автомобилей с полной массой до 2,0 т и для прицепов к ним; • класс 3 — для грузовых автомобилей с полной массой от 2 до 20 т; • класс 4 — для грузовых автомобилей с полной массой свыше 20 т; • класс 5 — для автомобилей повышенной проходимости и прицепов; • класс 6—7 — для тракторов и сельхозмашин. Колеса могут быть предназначены для следующих типов шин: • камерных; • бескамерных; • с регулируемым давлением; • арочных; • пневмокатков. По конструктивным особенностям колеса подразделяются по следующим признакам: • по типу обода — с неразъемным и разъемным ободом, с профилированным ободом, с ободом из фасонных профилей, со штампованным или литым ободом и т. д.; • по месту соединения диска с ободом — с диском, соединенным с ободом в средней части, то же в замочной части, то же в бортовой части; • по способу соединения диска с ободом — не регулируемые по вылету диска относительно обода и регулируемые; • по способу соединения колеса со ступицей — дисковые и бездисковые; • по числу колес, одновременно устанавливаемых на ступицу, — одинарные или сдвоенные. Ободья. Основные типы ободьев колес (рис. 122): • неразъемный; • разъемный посредине; • разъемный по радиусу — сегментный; • разъемный двух-, трех-, четырех- и пятиэлементный. Неразъемный обод состоит из закраин, полок и ручья. Закраины обода воспринимают усилия, передаваемые бортами шины, ограничивают их перемещение и защищают боковины шины от внешних повреждений. Полки яштяются посадочными местами для бортов шины с углом наклона к середине на 5°. Наклон полок обеспечивает натяг бортов при нака-
Глава 3. Колеса и шины 191 а) г) б) Рис. 122. Ободья колес автомобилей: a — легкового; б — грузового с ободом, имеющего разрезное замочное кольцо; в — грузового с ободом, имеющего разрезное бортовое кольцо; г — высокой проходимости; д — с бездисковым колесом со съемным плоским ободом, состоящим т трех частей; 1 — обод; 2 — диск; 3 — гайка; 4 — шпилька; 5 — ступица; 6 — колпак; 7 — неразрезное бортовое кольцо; 8 — разрезное замочное кольцо; 9 — разрезное бортовое кольцо; 10 — болт; 11 — наружный обод; 12 — распорное кольцо чивании шины после монтажа и соответственно их плотную посадку на полки. Ручей обода служит для временного размещения части борта шины в процессе ее монтажа (демонтажа) и должен быть достаточно глубоким. Неразъемные ободья являются наиболее жесткими и технологичными, имеют малую массу. Однако на них возможен и монтаж шин с достаточно эластичными бортами и боковинами, т. е. шины легковых автомобилей и грузовых автомобилей малой грузоподъемности.
192 Раздел IIL Несущая конструкция Для обеспечения безопасности бескамерных шин применяется специальный безопасный контур полок обода. Ободья изготовляются из качественных конструкционных сталей, допускающих глубокую вытяжку. В ряде случаев колеса в целом, т. е. обод совместно с диском, изготовляются из легких, преимущественно магниевых или алюминиевых сплавов. Разъемные ободья применяют для шин грузовых автомобилей и автобусов. Борта и боковины этих шин настолько жесткие, что не позволяют смонтировать шину через закраины обода. Наиболее распространенными являются плоские ободья с одной отъемной закраиной. Они имеют цилиндрический либо с неглубоким ручьем обод с одной закраиной. Шина беспрепятственно надевается на такой обод, после чего устанавливается вторая закраина, так называемое съемное бортовое кольцо, которая фиксируется на ободе. В двухэлементной конструкции съемная закраина выполнена с косым сквозным разрезом и монтируется в канавку на краю обода за счет ее радиальной упругой деформации. Трехэлементный обод имеет неразъемную жесткую съемную закраину и разрезное замочное кольцо с конической полкой. Четырехэлементный обод имеет неразъемную закраину, сплошное посадочное кольцо с конической полкой и разрезное (пружинное) замочное кольцо. Пятиэлементный обод отличается от четырехэлементного наличием уп- лотнительной вставки, позволяющей герметизировать обод при монтаже бескамерной шины. Дисковые колеса. В конструкции колеса диск является частью, соединяющей обод со ступицей. Диску придается чашеобразная форма, которая обеспечивает более высокую поперечную жесткость. В диске имеются центральное и крепежное отверстия, оси которых параллельны оси вращения колеса, а также ряд дополнительных отверстий разнообразной формы. Центральное отверстие служит для размещения ступицы колеса и центрирования диска на ступице. Дополнительные отверстия в диске используются для его облегчения, вентиляции тормозных механизмов, а также выполняют декоративные функции. Бездисковые колеса. На тяжелых автомобилях используются барабанные (спицевые) ступицы и бездисковые колеса, которые имеют конический поясок на поверхности обода, обращенный к ступице. Соединительная часть выполнена непосредственно на ступице и имеет коническую поверхность. По этим коническим поверхностям осуществляется центрирование обода относительно ступицы. Крепление этих колес осуществляется прижимами путем затяжки гаек на шпильках. Крепление дисков колес к фланцам ступиц осуществляется резьбовыми соединениями — болтами либо шпильками с гайками. Центрирование и крепление диска одинарных колес осуществляется конической частью гаек или болтов с правой резьбой и углом конуса 60°, которые упираются в соответствующие фаски крепежных отверстий диска. При сдвоенных колесах внутреннее колесо может притягиваться к фланцу колпачковой гайкой
Глава 3. Колеса и шины 193 (футоркой) со сферической опорной поверхностью и наружной резьбой, на которую наворачивается основная гайка, крепящая наружное колесо. Резьба крепежных деталей правых колес — правая, левых — левая. Длительное время считалось, что такая дифференциация резьб способствует предотвращению самоотворачивания гаек. Однако практика показала, что это не имеет большого значения. 3.4. Обозначение колес Обозначение колес несет в себе большой объем информации. Согласно международным соглашениям, в основу обозначения колес положены характеристики обода в следующей последовательности: • ширина обода по посадочным полкам в дюймах; • буквенное обозначение формы бортовой закраины обода; • знак «—» для разъемных и «х» для неразъемных ободьев; • номинальный посадочный диаметр обода; • буквенное обозначение типа посадочной полки обода; • для обозначения симметричности обода символ «-S» (иногда). Так например, обозначение 5Jxl3H2 указывает: обод шириной 5 дюймов с закраиной типа J, неразъемный, с посадочным диаметром 13 дюймов, с полкой типа Н с обеих сторон (Н2) (полка коническая с круглым подкатом), несимметричный (отсутствует обозначение S). Обозначение 5.00R—20—S: симметричный, разъемный обод шириной 5 дюймов с закраиной типа R, с посадочным диаметром 20 дюймов. 3.5. Балансировка колес Шины, колеса и ступицы изготовляются с определенными допусками, поэтому после сборки автомобильное колесо оказывается в той или иной степени неуравновешенным. При величине дисбаланса, превышающей допустимое значение, колесо необходимо балансировать. Балансировка выполняется на специальных стендах путем закрепления на ободе колеса балансировочных грузиков. Балансировке подлежат колеса в сборе с шиной, накачанной воздухом до рекомендуемого давления. Балансировка должна проводиться после каждого монтажа шин, а также периодически в процессе эксплуатации автомобиля. Балансировочные грузики имеют почти плоскую наружную поверхность, а изнутри профилированы по закраине обода колеса. Они имеют массу от 20 до 400 г. Для изготовления грузиков используют твердые сплавы свинца или литейную сталь. Прижимная пружина служит для закрепления грузика на закраине обода. Конструкция грузика и пружины должны обеспечивать их надежное соединение с колесом. 7 Устройство автомобиля
194 Раздел IIL Несущая конструкция 3.6. Ступицы колес Ступица предназначена для установки колеса с помощью подшипников на ось вращения, которая называется цапфой, или на балке моста. Ступица имеет фланец для крепления диска или непосредственно обода колеса. К нему же присоединяется барабан или диск тормозного механизма. Ступицы устанавливаются на конических роликовых или шариковых радиально упорных подшипниках, которые воспринимают как радиальные, так и осевые нагрузки, передаваемые на ступицу от колеса. Конические роликовые подшипники имеют большую несущую способность по сравнению с шариковыми. Это объясняется главным образом тем, что ролики образуют линейную зону контакта с беговыми дорожками колец подшипника, тогда как шарики точечную, меньшей плошали. Регулировкой конических роликовых подшипников ступицы, в отличие от аналогичных роликовых подшипников главной передачи, обеспечивается небольшой осевой зазор. В процессе эксплуатации осевой зазор в подшипниках из-за износа рабочих поверхностей увеличивается, поэтому в ступицах обязательно предусматриваются регулировочные устройства. На легковых автомобилях широкое распространение получили шариковые радиально-упорные подшипники ступиц колес. Такие подшипники заполняются долговечным смазочным материалом при их сборке, достаточно прочно монтируются в ступицу и не требуют обслуживания и регулировок. 3.7. Крепление запасного колеса Запасные колеса грузовых автомобилей крепят на откидных кронштейнах к лонжеронам рамы под платформой с правой стороны или в специальных держателях за кабиной (рис. 123). На легковых автомобилях запасные колеса крепят, как правило, в багажнике. Запасное колесо автомобиля ГАЗ-66-11 (рис. 123, а) размещено за кабиной в держателе, состоящем из неподвижной и подвижной (откидной) частей. Колесо зажимают между ними двумя стяжками. На конусе воротка с помощью тарельчатой пружины и гайки зажат храповик, удерживаемый от вращения в одну сторону собачкой. Для снятия колеса после разъема стяжек откидную часть вместе с колесом опускают, вращая вороток. При этом собачка, упираясь в храповик, предотвращает его вращение. Храповик проворачивается на конусном стержне воротка, что создает определенное сопротивление опусканию откидной части. В это время происходит разматывание троса, два конца которого закреплены на воротке. Для поднятия колеса его вкатывают на откидную половину и поднимают с помощью храпового механизма, вращая за вороток. При этом трос двумя концами наматывается на вороток. Защелка не дает храповику вращаться в обратном направлении.
Глава J. Колеса и шины 195 Рис. 123. Способы крепления запасного колеса автомобилей: а ГАЗ-53-12; б МАЗ-5335; в КамАЗ-5320; г — ГАЗ-66-11, / — откидной кронштейн; 2 — гайка крепления откидного кронштейна; 3 — защелка; 4 — кронштейн; 5 — ось кронштейна; 6 — лонжерон рамы; 7— рукоятка; 8— пружина валика защелки; 9 — кронштейн валика защелки; 10 — валик защелки; // — гайка крепления запасного колеса; 12 — таль; 13 — запасное колесо; 14 — прижим; 75— седло кронштейна; /б— кронштейн; 77— гайка; 18 — тарельчатые пружины; 19 — ось; 20 — вороток; 21 — неподвижная часть держателя; 22 — трос; 23 — храповик; 24 — собачка храповика; 25 — подвижная (откидная) часть держателя; 26 — стяжка
196 Раздел III. Несущая конструкция Глава 4 Кузова Кузов грузовых автомобилей служит для размещения в нем перевозимого груза, а кузов автобусов и легковых автомобилей, а также кабина грузовых автомобилей — для размещения водителя и пассажиров. По назначению кузова могут быть грузовые, пассажирские, грузопассажирские и специальные. По конструкции кузова делят на каркасные, полукаркасные и бескаркасные. Кроме того, кузова автомобилей могут быть несущие и с несущими основаниями. У несущего кузова все нагрузки воспринимаются непосредственно кузовом, а у кузова с несушим основанием нагрузка распределяется между кузовом и рамой. 4.1. Кузова легковых автомобилей К кузовам легковых автомобилей предъявляются не только эстетические требования, но и аэродинамические, так как при движении легкового автомобиля с большой скоростью значительная часть мощности его двигателя расходуется на преодоление сопротивления воздуха. Чтобы уменьшить сопротивление, кузову необходимо придать обтекаемую форму. По конструкции кузова легковых автомобилей (рис. 124 и 125) могут быть трехобъемными, двухобъемными и однообъемными. У трехобъемного кузова имеется три отсека: для двигателя, пассажиров и багажа. У двухобъ- емного кузова два отсека: в одном может находиться двигатель, а в другом — пассажиры и багаж. Если отсеки для двигателя, пассажиров и багажа объединяются в одно целое с кузовом, такой автомобиль называется одно- объемным. В настоящее время наибольшее распространение имеют кузова легковых автомобилей следующих типов: • трехобъемный кузов с двумя или четырьмя боковыми дверями седан; • трехобъемный кузов с двумя или четырьмя боковыми дверями и с перегородкой сзади переднего сиденья, отделяющей водителя от пассажиров — лимузин; • кузов с мягким складывающимся тентом и съемными боковыми окнами — фаэтон; • двухобъемный кузов с задней дверью с грузовым помещением, не отделенным перегородкой от пассажирского салона — универсал; • двухобъемный кузов с двумя или четырьмя боковыми дверями, имеющий заднюю дверь — комби (хетчбек); • кузов грузопассажирского автомобиля с открытой платформой, убирающимися боковыми сиденьями и с двухместной закрытой кабиной — пикап. Каркасные несущие кузова легковых автомобилей имеют специальный каркас, к которому прикреплены детали основания из тонкостенных про-
Глава 4. Кузова 197 Рис. 124. Элементы кузова автомобиля ГАЗ-3102 «Волга»: / — петля передней двери; 2 — болт крепления петли к кузову; 3 — болт крепления петли к двери; 4 — ограничитель; 5 — дуга; 6 — резиновая втулка филей, образующих жесткую сварную пространственную форму, на которой крепятся облицовочные панели. В бескаркасных кузовах, применяемых на современных легковых автомобилях массового производства, достаточную жесткость достигают соответствующим соединением панелей облицовки, в которые заформовывают стальную арматуру из тонкостенных арофилей. Комфортабельные легковые автомобили с двигателями большой мощности обычно имеют рамную конструкцию. Хорошему обзору дороги в непосредственной близости от автомобиля способствует низко опущенный капот двигателя. Для защиты пассажиров и водителя от пыли, влаги, низких и высоких температур кузов должен быть герметичным. С этой целью применяют специальную изоляцию.
198 Раздел III. Несущая конструкция Рис. 125. Оперение передней части кузова автомобиля ГАЗ-3102 «Волга»: 1 — облицовка радиатора; 2 — нижняя панель; 3 — вертикальный молдинг; 4 — облицовка фары; 5 — верхняя панель; 6 — предохранительный крючок; 7 — гайка штыря; 8 — пружина; 9 — запорный штырь; 10 — замок капота; 11 — капот; 12 — трос привода замка; 13 — переднее крыло; 14 - петля капота; 15 — рукоятка привода замка капота Корпус кузова легкового автомобиля представляет собой пространственную систему, состоящую из штампованных панелей и элементов каркаса коробчатого сечения, соединенных между собой точечной сваркой. Панели с поперечинами образуют основание (пол), ограниченное с боков порогами (продольными брусьями). Боковины кузова, образующие части порогов и стоек, переходят в задние крылья. Сверху кузов ограничивается панелью крыши. Коробчатые стержни, ограничивающие с боков переднее (ветровое) окно, называются стойками ветрового окна, вертикальные коробчатые стержни между передними и задними дверями — центральными стойками. Все детали кузова изготовляются штамповкой из малоуглеродистой, тонколистовой стали (толщиной 0,7—0,9 мм), сильно нагруженные детали — из листа толщиной 1,2 мм. Некоторые детали, особенно подверженные коррозии, изготовляются из листа, имеющего покрытие на основе цинка. 4.2. Кузова автобусов Кузова автобусов (рис. 126) могут быть одно- и двухэтажными, открытыми и закрытыми. Современные автобусы большей частью имеют цельнометаллические каркасные кузова вагонного типа, которые позволяют наиболее рационально использовать площадь салона для размещения пассажиров. Городские автобусы имеют два ряда сидений, центральный проход значительной ширины и широкие двери, обеспечивающие быстрый и
Глава 4. Кузова 199 Рис. 126. Каркас кузова автобуса удобный вход и выход пассажиров. Пригородные автобусы отличаются от городских большим числом мест ддя сидения. В международных и туристических автобусах, предназначенных для круглогодовых перевозок пассажиров в любое время года на дальние расстояния, для удобства пассажиров устанавливаются регулируемые сиденья, предусматриваются улучшенные вентиляция и отопление, пассажирское помещение радиофицировано, имеются багажные отделения. Несущие кузова автобусов по конструктивным элементам подобны кузовам легковых автомобилей, но имеют существенные отличия. В автобусных кузовах чаще, чем в кузовах легковых автомобилей, используется алюминий в виде листов и различных профилей. Соединение элементов кузова между собой обычно осуществляется заклепками. Каркас кузова автобуса состоит в основном из продольных и поперечных элементов, к которым заклепками или точечной сваркой (при стальных деталях) прикрепляются наружные панели, часто представляющие собой плоские листы металла. Поперечные элементы каркаса, образующие жесткую рамку, называются шпангоутами, продольные элементы каркаса — стрингерами. Несущая конструкция автобуса, каркас кузова которого состоит из жестких шпангоутов и соединяющих их стрингеров, образует конструкцию, имеющую высокие показатели жесткости (каркасный кузов). Из-за наличия пассажирских дверей силовая схема автобусного кузова обычно не симметрична, и для придания всей структуре необходимой жесткости дверные проемы усиливаются по периметру дополнительными деталями. Основание автобусного кузова, как правило, выполняется в виде самостоятельно работающей системы, на которую устанавливается каркас кузова, который в этом случае воспринимает относительно небольшую нагрузку. Такое основание называется несущим или интегральным. Интегральное основание позволяет вносить изменения в конструкцию кузова и выпускать одновременно автобусы с различными кузовами. Пространство между отдельными элементами интегрального основания используют для размещения топливных баков, ресиверов пневмосистемы, аккумуляторных батарей и других устройств, а на междугородних и туристских автобусах — для размещения багажа.
200 Раздел III. Несущая конструкция 4.3. Кузова грузовых автомобилей Кузова грузовых автомобилей могут быть универсальными или специализированными. Универсальный кузов предназначен для перевозок различных грузов и представляет собой деревянную или металлическую платформу (рис. 127), которая для облегчения погрузки и выгрузки груза обычно снабжена откидными бортами. 12 — продольный брус Специализированный кузов служит для перевозки груза только определенного типа. Установка высоких постоянных или съемных бортов облегчает перевозку грузов малой плотности, т. е. имеющих большой объем. Наиболее распространенными типами специализированных кузовов грузовых автомобилей являются фургон, цистерна и саморазгружающийся кузов (автомобиль самосвал). Для грузовых автомобилей малой грузоподъемности часто используют шасси легковых автомобилей и открытые кузова типа пикап с бортовой платформой или закрытые типа фургон и универсал. Универсальный кузов грузового автомобиля состоит из пола, неподвижного переднего борта, вертикальными стойками соединенного с основанием кузова, и трех откидных бортов, связанных с днищем кузова петлями. Планки, скрепляющие доски бортов, могут поворачиваться на петлях. В верхней части борта скрепляются между собой затворами, конструкция которых не допускает самопроизвольного открытия бортов. Доски пола соединены поперечинами, которые стремянками стянуты с продольными брусьями и балками рамы. Продольные брусья дополнительно скреплены с рамой стремянками. Кабины грузовых автомобилей бывают двухместные и трехместные. Кабины могут быть с отдельным отсеком для двигателя, закрытым капотом и
Глава 4. Кузова 201 бескапотные, В бескапотных кабинах двигатель расположен непосредственно под кабиной. Преимуществами таких кабин является хороший обзор дороги для водителя, возможность увеличения грузовой платформы и улучшения доступа к двигателю при откидывании кабины вперед. В откинутом положении кабина фиксируется специальным упором. Внутри кабины расположены все органы управления автомобилем, сиденья водителя и пассажиров, при необходимости оборудуются спальные места. Капот, крылья, подножка и облицовка радиатора составляют оперение автомобиля. 4.4. Оборудование кабин, кузовов Сиденья. В кабинах грузовых автомобилей устанавливаются одноместное сиденье для водителя (рис. 128 и 129) и двухместное для пассажиров. Пассажирское сиденье не регулируется (могут быть элементы регулировки), его подушка устанавливается на подставке, а спинка навешивается на заднюю стенку (могут быть два отдельных сиденья для пассажиров). Для удобства сиденье водителя регулируется в горизонтальном и вертикальном направлениях. В кабине автомобиля марки «КамАЗ» сиденье водителя подрессорено торсионным механизмом и снабжено амортизатором, имеется рычаг, с помощью которого можно регулировать жесткость торсионной подвески. У автомобиля ЗИЛ-4331 сиденье водителя имеет пружинную подвеску с гидравлическим амортизатором, причем жесткость подвески можно менять в зависимости от массы водителя, предусмотрена также регулировка положения сиденья по длине и по углу наклона подушки и спинки. У легковых автомобилей передние сиденья одноместные раздельные, могут регулироваться в продольном направлении, спинка может менять угол наклона. Подушки и спинки сидений, как правило, изготовляются из губчатой резины и обиваются искусственной кожей или декоративной тканью. Двери кузова автомобиля ГАЗ-24-10 «Волга» подвешиваются на двух внутренних петлях, крепление которых позволяет регулировать положение двери в проеме кузова. Для фиксации двери в открытом положении имеется специальный ограничитель. Термоизоляция и герметизация кузова обеспечиваются уплотнениями из губчатой резины, наклеенной по всему периметру дверей и крышки багажника, установкой на внутренней стороне капота прокладки из полихлорвиниловой пленки с поролоном. В закрытом положении двери фиксируются замком кулачкового типа и фиксатором. Замок вмонтирован в дверь, а фиксатор закреплен на стойке кузова. Кулачок имеет два выступа — предохранительный и рабочий. При защелкивании на предохранительный выступ дверь закрывается неплотно, а при защелкивании на рабочий выступ кулачка — плотно. При защелкивании на предохранительный выступ дверь при движении стучит, что служит предупреждением водителю о неплотном ее закрытии. Кулачок замка имеет поводок, приводимый в действие системой тяг и рычагов, позволяющий от-
202 Раздел IIL Несущая конструкция Рис. 128. Сиденья водителей автомобилей: а — ЗИЛ-4314.10; б — КамАЗ-5320; в — ГАЗ-24-ll) «Волга»; 1 — неподвижная направляющая; 2 — подвижная направляющая; 3 ~ малый шарик; 4 — большой шарик; 5 — сепаратор шариков; 6 — рычаг стопора горизонтального перемещения сиденья; 7 — подушка: 8 — слинка; 9 м 10 — верхний и нижний кронштейны крепления спинки; 11 — овальные отверстия; 12 — механизм горизонтального перемещения сиденья; 13 — круглые отверстия; 14 — кронштейн крепления сиденья: 75 — трубчатый каркас; 16 — рычаг регулирования жесткости торсиона; 17— рычаг регулировки наклона спинки сиденья; 18 — амортизатор: /Р— труба торсиона; 20 — поперечина остова: 21 — неподвижные направляющие; 22 — стопор; 23 и 30 — рычаги, фиксирующие положение сиденья при продольном перемещении; 24 — основание сиденья; 25 — гайки регулировки положения передней опоры: 26— подголовник; 27 — рычаг регулировки наклона спинки; 28 — отверстие для крепления задней стойки: 29 — болт крепления задней стойки пирать замок из салона с помощью внутренней ручки. Дверь можно запирать из салона выключателем с кнопкой, для чего необходимо нажать на нее. При опущенном выключателе дверь нельзя открыть ни снаружи, ни из салона. Для закрытия задних дверей снаружи необходимо нажать аналогичную кнопку замка задней двери и хлопнуть дверью. Передние двери можно запереть снаружи с помощью выключателя замка. Стеклоподъемники. Механизм стеклоподъемника состоит из зубчатого колеса привода, рычагов и неподвижной и подвижной кулис. Подъем стекла двери осуществляется по желобам с помощью направляющей стеклоподъемника.
Глава 4. Кузова 203 Рис. 129. Переднее сиденье: / — основание подушки; 2 — подушка; 3 — спинка; 4 — подголовник; 5 — каркас подголовника; 6 — направляющая подголовника; 7 — шплинт; 8 — облицовка рычага откидывания спинки; 9 — ручка механизма откидывания спинки; 10 — основание спинки; 1J — облицовка механизма регулирования наклона спинки; 12 — прокладка; 13 — держатель ручки механизма регулирования наклона спинки; 14 — болт крепления держателя; 15 — ручка механизма регулирования наклона спинки; 16 — болты крепления салазок; 17— направляющая салазок; 18 — ручка механизма передвижения; 19 — стойка основания; 20 — передний кронштейн; 21 ~- шпилька крепления кронштейна; 22 — торсионы Стеклоочистители. Для очистки ветрового стекла автомобиля от воды и снега используется стеклоочиститель. Стеклоочиститель (рис. 130, а) автомобиля «Волга» состоит из электродвигателя с редуктором, концевого выключателя, рычажной системы, щеток и биметаллического предохранителя. Вращательное движение нарезанного на валу якоря червяка системой рычагов превращается в колебательное движение щеток. Переключатель, с помощью которого осуществляется управление стеклоочистителем, расположен на рулевой колонке, он имеет четыре положения: «Выключено», «Малая скорость», «Прерывистая работа» и «Одновременная работа стек-
204 Раздел IIL Несущая конструкция а) б) Рис. 130. Приборы очистки ветрового стекла автомобиля «Волга»: а — стеклоочиститель; б — стеклоомыватель; / — ось рычага щетки; 2 — рычаг щетки; 3 — стекло; 4 — щетка; 5 — штекерная колодка; 6 — эксцентрик концевого выключателя; 7 — пластина концевого выключателя; 8 — контакты концевого выключателя; 9 — вал-шестерня; 10 — зубчатое колесо; 11 — корпус редуктора; 12 — вал электродвигателя с червяком; 13 — статор; 14 — электродвигатель привода насоса; 15 — крышка крепления насоса; 16 — бачок; 17 — вал электродвигателя; 18 — муфта; 19 — вал насоса; 20 — корпус насоса; 21 — ротор насоса; 22 — фильтр; 23 — штуцер; 24 — трубка; 25 — пробка бачка лоочистителя и стеклоомывателя». При выключении переключателя щетки продолжают двигаться до тех пор, пока не дойдут до нижнего положения. В этот момент концевой выключатель отключает цепь, и щетки останавливаются. На автомобилях с пневматическим приводом тормозных механизмов могут быть установлены стеклоочистители, которые приводят в действие сжатым воздухом. Стеклоомыватель ветрового стекла (рис. 130, б) состоит из бачка, внутри которого установлен насос с приводом от электродвигателя, резиновых шлангов и форсунок, размещенных перед ветровым стеклом.
Глава 4. Кузова 205 Зернило заднего обзора (одно или два) для наблюдения за дорогой сзади автомобиля расположено в салоне над ветровым стеклом или на кронштейнах, выходящих за габаритные размеры автомобиля по ширине. Исправное техническое состояние стеклоочистителей и стеклоомывате- лей, а также чистота зеркал заднего обзора обеспечивают водителю хороший обзор дороги, чем существенно повышают безопасность движения автомобиля. 4.5. Система отопления и вентиляции кузова Элементы управления системами отопления и вентиляции кузова (рис. 131 и 132) находятся на передней панели. При крайнем правом положении рукоятки жидкость из системы охлаждения двигателя подается в радиатор отопителя, в крайнем левом положении рукоятки жидкость в радиатор не подается. Количество воздуха, направляемого в отопитель, регулируется заслонкой. В крайнем левом положении рукоятки заслонка закрыта, в крайнем правом — полностью открыта и весь воздух проходит через ото- Рис. 13L Системы отопления и вентиляции кузова автомобиля ГАЗ-3102 «Волга»: /и 4— заслонки; 2 — кран подачи жидкости в радиатор отопителя; 3 и 6 — направляющие решетки; 5 — радиатор отопителя; 7, 8, 9 и 10 — рукоятки управления соответственно подачей жидкости в радиатор отопления, заслонкой воздухопритока отопителя, заслонкой естественной приточной вентиляции и распределительной заслонкой отопителя; 11 — переключатель вентилятора отопителя; 12 — воздуховоды отопления задней части салона
206 Раздел IIL Несущая конструкция а) б) Рис. 132. Направление воздушных потоков: а — в автомобиле ГАЗ-3102 «Волга»: б — в автобусе ПАЗ-3201 питель, а в промежуточном положении рукоятки одна часть воздуха проходит в радиатор, а другая обходит его и смешивается с нагретым воздухом. Интенсивность прогрева салона можно также регулировать двухскорост- ным вентилятором отопителя, управляемым переключателем. При движении автомобиля по пыльным дорогам в жаркую погоду пользуются принудительной приточной вентиляцией, при этом закрываются опускные стекла дверей, открываются заслонки естественной приточной вентиляции и воздухопритока системы отопления, а вентилятор включается на максимальную производительность. Поступающий внутрь кузова воздух через перфорированную обивку потолка и отверстия, расположенны)! на задних боковинах кузова, выходит наружу.
Раздел IV СИСТЕМЫ УПРАВЛЕНИЯ Глава 1 Рулевое управление Рулевое управление — совокупность механизмов, служащих для поворота управляемых колес, обеспечивает движение автомобиля в заданном направлении. Каждое управляемое колесо установлено на поворотном кулаке, соединенном с передней осью посредством шкворня, который неподвижно крепится в передней оси. При вращении водителем рулевого колеса усилие передается посредством тяг и рычагов на поворотные кулаки, которые поворачиваются на определенный угол (задает водитель), изменяя направление движения автомобиля. Рулевое управление состоит из следующих механизмов (рис. 133—136): 1. Рулевой механизм. 2. Рулевой привод. 3. Усилитель рулевого привода (не на всех автомобилях). Рис. 133. Рулевое управление автомобиля: /— поперечная тяга; 2 — левый рычаг рулевой трапеции; 3 — поворотный кулак; 4 — поворотный рычаг; 5 — продольная тяга; 6 ~ сошка; 7 — рулевой механизм; 8 — вал рулевого колеса; 9 — рулевое колесо; 10 — правый рычаг рулевой трапеции
208 Раздел IV. Системы управления 3' 2' mm -^тШ 10' Рис. 134. Рулевое управление автомобиля МАЗ-5335: 1 — продольная рулевая тяга; 2 — гидроусилитель рулевого привода; 3 — сошка; 4 — рулевой механизм; 5 — карданный шарнир привода рулевого управления; б— рулевой вал; 7— рулевое колесо; 8 — поперечная рулевая тяга; 9 — левый рычаг поперечной рулевой тяги; 10 — поворотный рычаг Рис. 135. Рулевое управление автомобиля ЗИЛ-4314.10: / — насос гидроусилителя; 2 — бачок насоса; 3 — шланг низкого давления; 4 — шланг высокого давления; 5 колонка; 6 — контактное устройство сигнала; 7 — переключатель указателей поворота; 8 карданный шарнир; 9 — карданный вал; 10 — рулевой механизм; // — сошка
Глава L Рулевое управление 209 Рис. 136. Рулевое управление автомобиля КамАЗ-5 320: / — корпус клапана управления гидроусилителем; 2 — радиатор; 3 — карданный вал; 4 — рулевая колонка; 5 — трубопровод низкого давления; 6 — трубопровод высокого давления; 7 — бачок гидросистемы; 8 — насос гидроусилителя; 9 — сошка; 10 — продольная тяга; 11 — рулевой механизм с гидроусилителем; 12 — корпус углового редуктора Требования, предъявляемые к рулевым управлениям. Предъявляемые к автомобилю требования в части управляемости, устойчивости, маневренности и легкости управления могут быть реализованы, если рулевым управлением обеспечивается: • требуемое передаточное число; • высокая жесткость деталей; • согласованность кинематики рулевого привода и направляющего устройства подвески; • минимальные зазоры в сочленениях деталей; • правильное соотношение углов поворота внутреннего и наружного колес; • оптимальная величина стабилизирующего момента; • небольшая величина крутящего момента, который необходимо прикладывать к рулевому колесу.
210 Раздел IV. Системы управления 1.1. Стабилизация управляемых колес Силы, действующие на автомобиль, стремятся отклонить управляемые колеса от положения, соответствующего прямолинейному движению. Чтобы не допустить поворота колес под действием случайных сил (толчков от наезда на неровности дороги и т. п.), управляемые колеса должны обладать способностью, сохранять положение, соответствующее прямолинейному движению, и возвращаться в него из любого другого положения. Эта способность называется стабилизацией управляемых колес. Стабилизация обеспечивается наклонами шкворней в поперечной и продольной плоскостях и упругими свойствами пневматической шины. Поперечный наклон шкворня вызывает подъем центра тяжести автомобиля при повороте управляемых колес. Поворачиваемое колесо, опираясь на дорогу, вызывает соответствующий подъем передней оси и центра тяжести автомобиля. Если отпустить рулевое колесо, то передняя часть автомобиля опустится вниз, и передние колеса возвращаются в положение, соответствующее прямолинейному движению. Стабилизирующий момент, действующий на управляемые колеса, с увеличением угла наклона шкворня и веса, приходящего на переднюю ось, возрастает. На стабилизирующий момент, возникающий вследствие поперечного наклона шкворня, не влияют скорость движения и качество дороги. Поперечный наклон шкворня (6—10°) уменьшает плечо поворота колеса, снижая передачу ударных нагрузок, действующих на рулевое управление от дороги. Часто стабилизирующий момент от наклона шкворня вбок называют весовым стабилизирующим моментом. Продольный наклон шкворня обычно выбирают таким, при котором нижний конец шкворня смещен вперед относительно вертикали, проходящей через его середину. Вследствие этого точка пересечения оси с дорогой расположена впереди центра контактной площадки колеса и дороги. При движении автомобиля его траектория движения часто имеет криволинейный характер, предопределяющий возникновение центробежной силы. Эта сила стремится сдвинуть автомобиль от центра поворота, чему препятствуют реакции дороги, приложенные в центре контактных площадок и направленные к центру поворота. Реакции управляемых колес, действуя на плече, созданном в результате наклона шкворня назад, стремятся возвратить управляемые колеса в положение, соответствующее прямолинейному движению. Стабилизирующий момент, действующий на управляемые колеса, в результате наклона шкворней в продольной плоскости пропорционален квадрату скорости и называется скоростным стабилизирующим моментом. Угол наклона шкворня в продольной плоскости равен 1—3,5° и в значительной степени связан с упругим стабилизирующим моментом пневматической шины. Эластичная шина соприкасается с дорогой на определенной площади, называемой контактной площадкой. Силы, действующие в контактной площадке, противодействуют повороту колеса. Создаваемый стабилизирующий момент зависит от эластичности шин. У грузовых автомобилей,
Глава 1, Рулевое управление 211 снабженных сравнительно жесткими шинами, упругий стабилизирующий момент небольшой, у легковых автомобилей он больше и приводит иногда к чрезмерной стабилизации управляемых колес, затрудняя управление. Для уменьшения влияния упругого стабилизирующего момента у большинства легковых автомобилей угол наклона шкворня в продольной плоскости делают равным нулю. 1.2. Рулевые механизмы Механизм рулевого управления (рис. 137 и 138) — понижающая передача, преобразующая вращение вала рулевого колеса в качание вала сошки. Механизм рулевого управления представляет собой редуктор. Особенность его работы заключается в следующем: • выходное звено механизма рулевого управления — сошка не вращается, а совершает качание в пределах угла 90—100°; Рис. 137. Механизм рулевого управления автомобиля ЗИЛ-4314.10: / — нижняя крышка; 2, 14, 27, 31 и 35 — уплотнительные резиновые кольца; 3 — заглушка; 4 — картер рулевого механизма; 5 — поршень-рейка; 6 — разрезное кольцо; 7 — винт рулевого механизма; 8 — шариковая гайка; 9 желоб; 10 — шарик; 11 уплотнительное чугунное разрезное кольцо поршня; 12 — промежуточная крышка; 13 — упорный шарикоподшипник; 15 — шариковый клапан; 16— золотник; 17— корпус клапана управления; 18 — пружинная шайба; 19— регулировочная гайка; 20 — верхняя крышка; 21 — игольчатый подшипник; 22 и 41 — упорные кольца уплотнительной манжеты; 23 и 42 — замочные кольца; 24 к 40— уплотнительные манжеты; 25 — реактивная пружина; 26 — реактивный плунжер; 28 — установочный винт; 29 — сектор; 30 — боковая крышка; 32 — упорная шайба; 33 — регулировочная шайба; 34 — стопорное кольцо; 36 — регулировочный винт; 37 — вал сошки; 38 — сливная пробка с магнитом; 39 — втулка вала сошки; 43 — сошка
212 Раздел IV, Системы управления А — А увеличено Рис. 138. Механизм рулевого управления: / — защитный колпачок; 2 — картер; 3 — рейка; 4 — приводное зубчатое колесо; 5 — рулевая тяга; 6 — распорная втулка; 7 — болт крепления рулевой тяги; 8 — соединительная пластина; 9 — упорная втулка; 10 — опора; 11 — опорная втулка рейки; 12 — защитный чехол; 13 — хомут; 14 — упорное кольцо рейки; 15 — уплотни- тельное кольцо упора рейки; 16 — гайка; 17— упор рейки; 18— роликовый подшипник; 19- шариковый подшипник; 20 — стопорное кольцо; 21 — уплотнительное кольцо гайки; 22 - гайка крепления подшипника зубчатого колеса; 23 — пыльник; 24 — шайба • основной режим работы соответствует прямолинейному движению автомобиля; • зазор, определяющий свободное вращение рулевого колеса, должен иметь небольшую величину. Требования, предъявляемые к механизмам рулевого управления: • высокий КПД в прямом направлении движения автомобиля и несколько меньше в обратном; • нулевой зазор в среднем положении, т. е. механизм с беззазорным зацеплением. По конструкции механизмы рулевого управления делятся на червячные, винтовые и реечные. 1.3. Червячные механизмы рулевого управления До недавнего времени в грузовых автомобилях марки «ГАЗ» (рис. 139) применялся червячный рулевой механизм. Он собран в картере, который крепится к левому лонжерону рамы. Рулевое колесо закреплено на верхнем конце вала. На противоположном конце вала на шлицы напрессован глобоидальный червяк, опирающийся на конические роликоподшипники.
Глава 1. Рулевое управление 213 Рис. 139. Механизм рулевого управления автомобиля ГАЗ-53А: 1 — стопорная шайба; 2 — хвостовик вала сошки; 3 — винт; 4 и 9 — гайки; 5 — штифт; 6 и 22 — уплотнительные муфты; 7— вал сошки; 8 — сошка; 10 — вал; 11 — трубка; 12, 15, 20и 21 — подшипники; 13 — глобоидальный червяк; 14— ось ролика; 16— ролик; 17— распорная втулка; 18 — кривошип; 19 — картер; 23 — пружина; 24 — прокладка В зацеплении с червяком находится трехгребневый ролик, посаженный на двух шарикоподшипниках, между которыми помещена распорная втулка. Ось ролика закреплена в вильчатом кривошипе вала сошки. Вал сошки имеет сдвоенные шлицы, обеспечивающие правильность установки сошки под необходимым углом. 1.4. Винтовые механизмы рулевого управления В настоящее время на грузовых автомобилях распространенным является механизм рулевого управления с винтовой передачей с циркулирующими шариками и зубчатым зацеплением. Механизм рулевого управления автомобиля МАЗ-5335 (рис. 140) представляет собой винт вала рулевого колеса, который проходит внутри гайки-рейки, находящейся в зацеплении с зубчатым сектором вала сошки. В винтовые канавки между гайкой-рейкой и винтом при сборке заложено два ряда шариков. Движение шариков в винтовых канавках ограничено направляющими. Высокая точность деталей механизма обеспечивает легкое и плавное вращение винта в гайке-рейке. Вал сошки, изготовленный как одно целое с зубчатым сектором, установлен на игольчатых подшипниках в картере механизма. Зубья сектора выполнены с переменной по длине толщиной, что позволяет регулировать зазор в зацеплении с рейкой, перемещая в осевом направлении сектор регулировочным винтом. Винт в сборе с валом сектора вворачивают в боковую крышку картера и крепят контргайкой. Регулировочный винт упирается в опорную пластину и удерживается гайкой. Контргайка фиксирует положение винта после регулировки. Винт вращается в двух роликоподшипниках и соединяется с
214 Раздел IV. Системы управления Рис. 140. Механизм рулевого управления автомобиля МАЗ-5335: / — сошка; 2 и 17 — уплот- нительные манжеты; 3 — упорное кольцо; 4 — подшипник вала сектора; 5 — картер; 6 — гайка-рейка; 7 — зубчатый сектор; 8 — регулировочные прокладки; 9 — болт крепления крышки; 10 — нижняя крышка; // — подшипник винта; 12 — винт; 13 и 15 — направляющие шариков; 14 — шарики; 16 — пробка отверстия для заливки масла; 18 — опорная пластина; 19 — гайка регулировочного винта; 20 — боковая крышка картера; 21 — контргайка; 22 — регулировочный винт валом рулевого колеса карданным шарниром. Для правильной установки сошки на торие вала сектора нанесена метка, которую при сборке совмещают с меткой на сошке. У механизма рулевого управления автомобиля ЗИЛ-4314.10 (см. рис. 137) поршень-рейка одновременно является поршнем гидроусилителя (гидроусилитель встроен конструктивно в механизм рулевого управления) и рейкой, которая находится в зацеплении с зубчатым сектором вала рулевой сошки. При воздействии водителя на рулевое колесо через вал и карданную передачу вращение передается винту, по которому на циркулирующих шариках перемещается шариковая гайка. Вместе с гайкой вдоль винта перемещается поршень-рейка, поворачивая зубчатый сектор вала сошки. Зазор в зацеплении зубьев рейки и сектора можно регулировать, смещая в осевом направлении вал сошки, так как зубья имеют переменную по длине толщину. В картер механизма рулевого управления и в отверстие его боковой крышки запрессованы бронзовые втулки, в которых вращается вал сошки. Механизм рулевого управления автомобилей марки «КамАЗ» (рис. 141) включает в себя угловой редуктор, ведущее и ведомое конические зубчатые колеса которого передают вращение на винт, перемещающий гайку и скрепленную с ней поршень-рейку, зубья которой входят в зацепление с зубча-
Глава L Рулевое управление 215 Рис. 141. Механизм рулевого управления автомобиля КамАЗ-5320: / — реактивный плунжер; 2— корпус клапана управления; 3 ~ ведущее зубчатое колесо; 4 — ведомое зубчатое колесо; 5, 22 и 29— стопорные кольца; 6 — втулка; 7 и 31 — упорные кольца; 8 — уплотнительное кольцо; 9 и 15 — винты; 10 — перепускной клапан; 11 и 28 — крышки; 12 — картер; 13 — поршень-рейка; 14 — пробка; 16 и 20 — гайки; 17 — желоб; 18 — шарик; 19 ~ сектор; 21 — стопорная шайба; 23 — корпус; 24 — упорный подшипник; 25 — плунжер; 26 — золотник; 27 — регулировочный винт; 30 — регулировочная шайба; 32 — зубчатый сектор вала сошки тым сектором вала сошки. К корпусу углового редуктора прикреплен корпус клапана управления гидроусилителя. 1.5. Реечные механизмы рулевого управления В последнее время широкое распространение на легковых автомобилях получил реечный механизм рулевого управления. Основным преимуществом реечных механизмов является высокий КПД и возможность иметь в рулевом приводе меньшее число шарниров. Передаточные отношения механизма определяются отношением числа оборотов зубчатого колеса, равное числу оборотов рулевого колеса, к расстоянию перемещения рейки. За
216 Раздел IV. Системы управления счет соответствующей нарезки зубьев на рейке имеется возможность получения переменного передаточного числа при перемещении этой рейки. Это дает возможность уменьшить действующие в приводе силы или перемещение рейки для коррекции в работе рулевого привода. Реечный механизм рулевого управления (см. рис. 138) состоит из картера, отлитого из алюминиевого сплава. В полости картера на шариковом и роликовом подшипниках установлено приводное зубчатое колесо. На картере и на пыльнике выполнены метки для правильной сборки механизма рулевого управления. Зубчатое колесо находится в зацеплении с зубчатой рейкой, которая поджимается к зубчатому колесу пружиной через металло- керамический упор. Пружина поджимается гайкой со стопорным кольцом, создавая сопротивление отворачиванию гайки. Подпружиненным упором облегчается беззазорное зацепление зубчатого колеса с зубчатой рейкой по всей величине хода. Рейка одним концом опирается на упор, а другим — на разрезную пластмассовую втулку. Ход рейки ограничивается в одну сторону кольцом, напрессованным на рейку, а в другую сторону — втулкой резино- металлического шарнира левой рулевой тяги. Полость картера механизма рулевого управления защищена от загрязнения гофрированным чехлом. Вал рулевого управления соединяется с приводным зубчатым колесом эластичной муфтой. Верхняя часть вала опирается на шариковый радиальный подшипник, запрессованный в трубу кронштейна. На верхнем конце вала на шлицах через демпфирующий элемент крепится гайкой рулевое колесо. 1.6. Рулевой привод Рулевой привод включает в себя систему тяг, шарниров и рычагов, осуществляющих с механизмом рулевого управления поворот управляемых колес. Рулевой привод имеет рулевую трапецию, которая позволяет поворачивать управляемые колеса на разные углы, чем достигается их качение без бокового проскальзывания. Рулевая трапеция может быть задней или передней, т. е. с поперечной рулевой тягой, расположенной сзади переднего моста или перед ним. Различают цельную (единую) трапецию, применяемую при зависимой подвеске колес и расчлененную, используемую при независимой подвеске. Рулевой привод грузовых автомобилей с зависимой подвеской включает в себя: сошку, продольную тягу, два левых поворотных рычага, поперечную тягу, правый поворотный рычаг, рулевую трапецию (шарнирный четырехугольник, образованный средней частью балки передней оси, поперечной тягой и левым и правым поворотными рычагами). При движении автомобиля по неровной дороге на детали рулевого привода (сошку, продольную и поперечную рулевые тяги, рулевые рычаги) действуют большие нагрузки. Поэтому в рулевой привод вводят пружины для смягчения толчков и для автоматического устранения зазоров, возникающих при изнашивании деталей. Поперечная рулевая тяга на одном конце имеет левую резьбу и правую на другом для навинчивания наконечников
Глава 1. Рулевое управление 217 крепления шаровых шарниров. Вследствие этого можно изменять расстояние между шарнирами при регулировании схождения управляемых колес. При независимой подвеске управляемых колес легковых автомобилей рулевой привод (рис. 142) включает в себя (с червячным механизмом рулевого управления): сошку; маятниковый рычаг; составную поперечную тягу, состоящую из средней тяги, шарнирно соединенной по концам с сошкой и маятниковым рычагом и две боковые тяги; левый и правый поворотные рычаги. Рис. 142. Рулевые тяги автомобиля ГАЗ-24 «Волга»: 1 — шплинт; 2 — резьбовая пробка; 3 — пружина; 4 — опорная пята; 5 — корпус шарнира; 6и 10 — резиновые уплотнители; 7 — распорная втулка наконечника; 8~ гайка; <? — распорная втулка тяги; 11 — шаровой палец; /2 — корпус шарнира; 13 — полиэтиленовый сухарь; 14 — маятниковый рычаг; 15 — втулка из порошкового материала; 16 — резиновая втулка рычага; 17 — поперечная тяга; 18 — боковая тяга; 19 — сошка; 20 — болт; 21 — стяжной хомут; 22 — регулировочная трубка; 23 — наконечник тяги; 24 — рычаг поворотного кулака Независимая подвеска легковых автомобилей с реечным механизмом рулевого управления состоит из составной поперечной тяги, средней частью которой является зубчатая рейка механизма рулевого управления, к ней шарнирно крепятся (по концам или в одном месте) боковые тяги. Боковые тяги, в свою очередь, крепятся шарнирно к поворотным рычагам (левому и правому). Трапеция состоит из средней части передней оси, составной поперечной тяги и поворотных (левого и правого) рычагов. Шарниры рулевых приводов. Основные требования, предъявляемые к шарнирам рулевого привода (рис. 143), заключаются в беззазорности и износостойкости. Поэтому все шарниры поджаты скользящей поверхностью путем деформации упругого элемента. В шарнирном соединении шарового пальца с продольной рулевой тягой один из сухарей (вкладыш) представляет собой жесткую опору, а другой опирается на пружину. Внешний сухарь
218 Раздел IV. Системы управления 12 3 4 5 6 7 15 16 17 Рис. 143. Шарнирное соединение деталей рулевого привода автомобилей: а — ГАЗ-53А; 6 - ЗИЛ-130; в — МАЗ-5335; / — масленка; 2 — пята; 3 — коническая пружина; 4 — крышка; 5- стопорное кольцо; 6 и 75— наконечники; 7и /7— трубы; 8 — резиновое кольцо; 9 — обойма; 10 — резиновый колпак; 11 — кольцо; 12 — полусферический палец; 13 и 19 — сухари; 14- сменный вкладыш; 16 — хомут; 18 — пробка; 20 — пружина; 21 — ограничитель прижат к шаровому шарниру резьбовой пробкой. Во всех соединениях сухари постоянно прижимаются к головке шарового пальца под действием пружин. Шарниры тяг с полусферическими пальцами саморегулирующиеся разборные. Использование высококачественных конструкционных материалов для сухарей, современных смазочных материалов и надежных уплотнений позволяет в настоящее время применять шарниры, не требующие замены смазочного материала в течение всего их срока службы. 1.7. Усилители рулевого привода Если на управляемые колеса приходится большая нагрузка (грузовые автомобили большой и средней грузоподъемности и автобусы), то управление автомобилем затрудняется необходимостью приложения к рулевому колесу значительного усилия. В тех случаях, когда работа водителя не может быть облегчена увеличением передаточного числа механизма рулевого управления, конструкция предусматривает применение усилителей. Усилители увеличивают маневренность автомобиля, повышают безопасность движения, так как позволяют сохранить управляемость автомобилем даже в случае разрыва шины на одном из передних колес, уменьшают усилие, затрачиваемое водителем при повороте управляемых колес, и смягчают толчки, передающиеся на рулевое колесо при движении автомобиля по неровной дороге. При применении усилителя несколько ухудшается стабилизация управляемых колес и больше изнашивается шина (из-за высокой его чувствител ьности).
Глава L Рулевое управление 219 Усилители бывают электрические, пневматические и гидравлические. Электрические усилители показывают хорошие результаты, но в настоящее время только выходят из стадии лабораторных исследований и разработок, а пневматические оказались неприемлемыми ввиду большой упругой податливости рабочего тела — воздуха, приводившей к запаздыванию срабатывания усилителя и возникновению в рулевом управлении недопустимых колебательных процессов. Поэтому в настоящее время широко применяют гидравлические усилители. Гидравлический усилитель может быть встроенным в механизм рулевого управления и отдельным. В общем случае гидравлический усилитель состоит из источника энергии (гидронасоса), распределителя, исполнительного устройства (силового цилиндра). Требования, предъявляемые к усилителю рулевого привода: • должны обеспечивать следящее действие как по силе, так и по перемещению рулевого колеса (сила перемещения рулевого колеса должна быть пропорциональна силе сопротивления повороту и углу поворота управляемых колес); • в случае выхода из строя усилителя — управление автомобилем не должно нарушаться; • минимальное время срабатывания; • минимальное препятствие стабилизации управляемых колес; • усилитель не должен включаться от толчков дороги. По месту установки элементов усилителя различают четыре типа усилителей рулевого привода. Первый тип — элементы расположены близко к рулевому колесу — высокая чувствительность, минимальная длина трубопроводов, компактность (автомобили марок «ЗИЛ», «КамАЗ»). Силовой цилиндр Рулевой механизм Распределитель 1 Второй тип — силовой цилиндр и распределитель далеко от механизма рулевого управления, который установлен автономно — чувствительность ухудшается, большая длина трубопроводов (автомобили марок «МАЗ», «КрАЗ»). Силовой цилиндр Распределитель Рулевой механизм
220 Раздел IV. Системы управления Третий тип — автономное расположение всех элементов — чувствительность хуже, большая длина трубопроводов, но удобна в обслуживании (автомобиль ГАЗ-60-11). Силовой цилиндр Распределитель Рулевой механизм Четвертый тип — механизм рулевого управления соединен с распределителем — чувствительность хорошая, большая длина трубопроводов (автомобиль УралАЗ-4320). Силовой цилиндр Рулевой механизм Распределитель Встроенный гидроусилитель автомобиля ЗИЛ-4331 (рис. 144). Корпус распределителя крепится к промежуточной крышке картера механизма рулевого управления. Золотник распределителя крепится между упорными шариковыми подшипниками на винте. Золотник представляет собой цилиндр с двумя проточками. Упорные шарикоподшипники стянуты гайкой с подложенной под нее конической пружиной шайбой, обращенной вогнутой стороной к шарикоподшипнику. Длина золотника больше отверстия для него в корпусе распределителя, вследствие чего золотник и винт могут перемещаться в осевом направлении примерно на 1 мм в каждую сторону от среднего положения. Шесть реактивных пружин с реактивными плунжерами с каждой стороны. Пружины стремятся удержать золотник в среднем (нейтральном) положении. Если возникающая при вращении винта осевая сила больше силы предварительного сжатия реактивных пружин, то винт и золотник смещаются вправо или влево (на 1 мм) в зависимости от направления вращения винта, сообщая одну из полостей картера (силового цилиндра) механизма рулевого управления с магистралью высокого давления, а другую со сливным каналом. Масло под давлением (в современных усилителях используется давление 7—15 МПа) воздействует на тот или другой торец поршня рейки, создавая дополнительное усилие, способствующее повороту вправо или влево управляемых колес. При среднем (нейтральном) положении золотника жидкость из на-
Глава 1. Рулевое управление 221 а) в) Рис. 144. Работа гидроусилителя рулевого привода автомобиля ЗИЛ-4331: о — нейтральное положение; б — перемещение золотника вправо; в — перемещение золотника влево; / и 7 — перепускные клапаны; 2 — сапун; 3 и 4 — сетчатые фильтры; 5 — коллектор; 6 — насос; 8 — предохранительный клапан; 9 и 10 — демпфирующие отверстия; 11 — калиброванное отверстие; 12 — шариковый клапан; 13 — реактивный плунжер; 14 — золотник; 15 — винт механизма рулевого управления; 16 — вал сошки; 17— картер механизма рулевого управления coca, заполнив обе полости силового цилиндра, вытекает через золотник в бачок гидронасоса. При повороте вправо винт, выкручиваясь из поршня-рейки, вследствие сопротивления, возникающего при повороте колес, стремится сдвинуться в осевом направлении. Как только сдвигающая сила будет больше силы предварительно сжатых пружин реактивных плунжеров, золотник переместится вправо, соединяя магистраль высокого давления с полостью вправо от поршня, а полость слева от поршня со сливным каналом. Поршень-рейка перемещается под действием усилий, возникающих при выкручивании винта и от давления жидкости. В случае поворота колес автомобиля влево золотник под аналогичным воздействием перемещается также влево, соединяя полость слева от поршня с магистралью высокого давления, а полость справа от поршня со сливным каналом. Увеличение сопротивления повороту колес, оказываемое дорогой, вызывает повышение давления в рабочей полости картера и под реактивными плунжерами. Чем больше сопротивление повороту колес, тем с большей силой золотник стремится вернуться в среднее положение. Одновременно с этим возрастает и усилие на рулевом колесе, благодаря чему у водителя возникает «чувство дороги».
222 Раздел IV. Системы управления Если водитель перестает поворачивать рулевое колесо, то прекращается и поворот управляемых колес, так как винт перестает вращаться и поступающая в картер механизма рулевого управления жидкость перемешает поршень-рейку с винтом и золотником в исходное среднее положение, при котором прекращается действие жидкости на поршень-рейку. В работе гидроусилителей автомобилей марок «ЗИЛ» и «КамАЗ» много общего, но конструкция гидроусилителя автомобилей марки «КамАЗ» имеет некоторые особенности. Распределитель расположен впереди углового редуктора. В центральном отверстии распределителя размещен золотник, вокруг которого в трех сквозных отверстиях расположено по два цилиндра с центрирующей пружиной между ними, а в трех глухих отверстиях расположено по одному плунжеру с пружиной. Наличие трех плунжеров в глухих отверстиях объясняется следующим. Жидкость, находящаяся в корпусе углового редуктора, действует на три торца реактивных плунжеров, находящихся в сквозных отверстиях, а также на кромку сечения винта по месту его уплотнения, а в полости слева под передней крышкой действуют лишь на торцы трех плунжеров. Чтобы обеспечить одинаковое реактивное усилие на рулевом колесе от давления жидкости при повороте как направо, так и налево со стороны углового редуктора расположены три дополнительных плунжера, общая площадь которых равна площади кромки сечения винта. В одном из плунжеров встроен обратный клапан, который при отказе гидросистемы соединяет между собой магистрали высокого и низкого давления, обеспечивая работу рулевого управления без усилителя. Предохранительный клапан соединяет магистрали нагнетания и слива при давлении жидкости свыше 8 МПа, предохраняя насос от перегрева, а детали от перегрузок. Размещение предохранительного клапана в отдельной бобышке облегчает его регулировку и ремонт. Отдельный гидроусилитель автомобиля МАЗ-5335 (рис. 145 и 146). Распределитель крепится к корпусу шаровых шарниров и силового цилиндра. Внутри корпуса распределителя имеются три кольцевых канавки: две крайние соединены между собой каналом и с магистралью нагнетания, средняя сообщает магистраль слива с бачком насоса. Две кольцевые канавки золотника соединяются каналами (Одна — с левой, другая — с правой стороны) с реактивными камерами, представляющими собой замкнутую полость. Шаровые пальцы сошки и продольной рулевой тяги закреплены в корпусе шаровых шарниров. Этот корпус фланцем скреплен с корпусом золотника. Шаровые пальцы зажаты пружинами между сферическими сухарями пробкой и регулировочной гайкой. Сухари удерживаются от вращения штифтами, а шаровые пальцы в сухарях могут поворачиваться в некоторых пределах. Внутри корпуса шаровых шарниров в осевом направлении может перемещаться стакан с закрепленным в нем шаровым пальцем сошки. Со стаканом перемешается и золотник, жестко соединенный с ним болтами. На корпус шаровых шарниров навернут силовой цилиндр, в котором помещен поршень со штоком. С одной стороны полость цилиндра закрыта пробкой, а с другой — крышкой. На конце штока имеется головка для его крепления в кронштейне рамы. Полости цилиндра, разделенные поршнем,
Глава L Рулевое управление 223 Рис. 145. Гидроусилитель рулевого привода автомобиля МАЗ-5335: / — гидроцилиндр; 2 — шток; 3 — нагнетательный трубопровод; 4 — поршень; 5, 31 и 32 — пробки; 6 — корпус шаровых шарниров; 7 — регулировочная гайка зазора шарового шарнира продольной тяги; 8 — толкатель; 9 — шаровой палец продольной рулевой тяги; 10 — шаровой палец сошки; 77 — сливной трубопровод; 12 — крышка; 13 — корпус распределителя; 14 — фланец; 75 и 17 — трубопроводы; 16 — хомут крепления уплотнителя; 18 — масленка; 19 — сухарь; 20 — стопорный винт; 21 — крышка гидроцилиндра; 22 — винт; 23 — внутренняя шайба крепления чехла; 24 — головка штока; 25 — шплинт; 26 — штуцер сливного трубопровода; 27 ~ штуцер нагнетательного трубопровода; 28 — держатель шлангов; 29 — регулировочная пробка зазора шарового шарнира сошки; 30 — золотник; 33 — стяжной болт; 34 — соединительный канал; 35 — стакан; 36 — обратный клапан соединены трубопроводами с каналами в корпусе распределителя, выходящими в полость между кольцевыми проточками. Жидкость, подаваемая насосом по магистрали нагнетания в распределитель, заполняет две крайние кольцевые полости и в прямолинейном движении автомобиля, проходя между кромками золотника в центральную кольцевую полость, по трубопроводу возвращается в бачок насоса. При повороте рулевого колеса шаровой палец сошки перемещает золотник в сторону от нейтрального (среднего) положения. Вследствие этого крайняя и центральная кольцевые полости разъединяются буртиком золотника и жидкость насосом подается в одну из полостей силового цилиндра, а из другой сливается в бачок. Под действием давления жидкости силовой цилиндр перемещает шаровой палец продольной рулевой тяги и весь золотниковый механизм. Через каналы в золотнике жидкость под давлением всегда передается в реактивные камеры, поэтому золотник стремится вернуться в нейтральное положение.
224 Раздел IV. Системы управления Рис. 146. Работа гидроусилителя рулевого привода автомобиля МАЗ-5335: а — нейтральное положение; б — поворот колес в левую сторону; в — поворот колес в правую сторону; 1 — реактивная камера; 2 — золотник; 3 — соединительный канал; 4 — корпус распределителя; 5 - маслопровод к поршневой полости гидроцилиндра; 6 — маслопровод к надпоршневой полости гидроцилиндра; 7— поршень; 8 — гидроцилиндр; 9 — шток поршня; 10 — продольная рулевая тяга; 11 — шаровой палец продольной тяги; 12 — шаровой палец сошки; 13 — линия для слива масла; 14 — нагнетательная линия; 15 — обратный клапан; 16 — рулевое колесо; 17 ~ бак; 18 — насос; 19 — гидроусилитель; 20 — сошка; А и Б — полости; В — центральная кольцевая полость; / — нагнетательная полость Как только прекратится поворот рулевого колеса, золотник остановится, а корпус распределителя, продолжая двигаться под действием гидроцилиндра, установит золотник в нейтральное положение. Поворот управляемых колес автомобиля прекратится, так как жидкость начнет сливаться в бачок. При увеличении сопротивления повороту колес автомобиля возрастает давление жидкости как в рабочей полости цилиндра, так и в реактивных камерах распределителя. При повышении давления золотник стремится вернуться в нейтральное положение. Поэтому водитель должен приложить к рулевому колесу большее усилие, что помогает обеспечить «чувство дороги» так же, как и при управлении автомобилем без усилителя. В корпусе распределителя установлен обратный клапан, перепускающий жидкость из одной полости гидроцилиндра в другую при неработающем гидроусилителе, что позволяет управлять автомобилем при неработающем двигателе (буксирование автомобиля). Следует отметить, что допускается лишь кратковременное управление автомобилем при неработающем усилителе, так как при этом на рулевом колесе, а следовательно, и во всех деталях механизма рулевого управления нагрузки могут быть значительные.
Глава L Рулевое управление 225 1.8. Насосы гидроусилителей Насос гидроусилителя (рис. 147) должен быть высокопроизводительным, чтобы уже при невысокой частоте вращения коленчатого вала двигателя обеспечивать повороты рулевого колеса с требуемой быстротой. Насос имеет клиноременный привод от шкива коленчатого вала. Шкив насоса закреплен на наружном конце вала, установленного на игольчатом и шари- Рис. 147. Насос гидроусилителя рулевого привода автомобиля ЗИЛ-4331: 1 и 13 — перепускные клапаны; 2 и 20 — сетчатые фильтры; 3 — корпус насоса; 4 — шарикоподшипник; 5 — уплотнительная муфта; 6 — вал насоса; 7 — игольчатый подшипник; 8 — статор; 9 — ротор; 10 — распределительный диск; 11 — калиброванное отверстие; 12 — крышка насоса; 14 — седло предохранительного клапана; 75 — пружина; 16 — предохранительный клапан; 17 ~ коллектор; 18 — бачок; 19 — резиновая прокладка; 21 — сапун; 22 — крышка бачка; 23 — шайба; 24 — гайка-барашек; 25 — резиновое кольцо; 26 — шкив; 27 — лопасть 8 Устройство автомобиля
226 Раздел IV. Системы управления ковом подшипниках. На валу насоса на шлицах посажен ротор, в пазы которого свободно вставлены лопасти. К корпусу насоса шпильками и болтами вместе с распределительным диском и крышкой прикреплен статор. При вращении ротора лопасти, перемешаясь в его пазах, постоянно плотно прижимаются к криволинейной поверхности статора под действием центробежных сил и давления жидкости. Жидкость из корпуса попадает в пространство между лопастями и вытесняется ими в полость нагнетания. За один оборот ротора дважды происходит забор и нагнетание жидкости. Из полости нагнетания через отверстия распределительного диска, калиброванное отверстие и канал в крышке насоса жидкость поступает в нагнетательный шланг (трубопровод) гидроусилителя. На верхней части корпуса насоса укреплен бачок для жидкости (масло), закрытый крышкой, в которой установлен сапун, поддерживающий давление внешней среды внутри бачка. Масло, заливаемое в бачок, проходит через сетчатый фильтр. В магистрали слива масла имеется также сетчатый фильтр и перепускной клапан, который срабатывает в случае засорения фильтра. В крышке насоса установлен перепускной клапан, имеющий отверстия для соединения с полостью нагнетания насоса. При повышении частоты вращения коленчатого вала двигателя разность давлений на торцах перепускного клапана возрастает, так как с увеличением подачи масла в систему гидроусилителя повышается разность давлений в полости нагнетания насоса и в магистрали нагнетания. При чрезмерном увеличении подачи масла в систему гидроусилителя перепускной клапан перемещается вправо, сжимая пружину, и сообщает полость нагнетания с бачком. Для уменьшения уровня шума при работе насоса и снижения износа его деталей при большой частоте вращения коленчатого вала двигателя масло, проходя перепускной клапан, принудительно направляется обратно в полость корпуса насоса и в канал всасывания. Для этого имеется коллектор, внутренний канал которого соединен с полостью бачка. Внутри перепускного канала есть седло с установленным в нем предохранительным клапаном, который открывается при достижении давления масла 6,5—7 МПа и перепускает его из нагнетательного канала в бачок. На грузовых автомобилях особо большой грузоподъемности, движение которых без усилителя рулевого привода невозможно, обычно применяют дополнительный, аварийный привод насоса от электродвигателя. Он автоматически включается при аварийной остановке двигателя автомобиля. Техническое состояние механизма рулевого управления оказывает существенное влияние на безопасность движения автомобиля, поэтому правильной эксплуатацией механизма рулевого управления и своевременному регулированию необходимо уделять самое серьезное внимание. Не допускается, к примеру, эксплуатация автомобиля, если свободный ход рулевого колеса превышает 25° В этом случае эксплуатация автомобиля затруднена и износ деталей механизма рулевого управления значителен. Для повышения надежности и упрощения обслуживания элементов механизма рулевого управления конструкция привода предусматривает час-
Глава 2. Тормозная система 227 тичное или даже полное отсутствие регулировок шарнирных узлов рулевого привода. Детали механизма рулевого управления изготовляются с большой точностью и подвергаются термообработке. Глава 2 Тормозная система 2.1. Назначение и требования к тормозным системам Тормозная система предназначена для снижения скорости движения и полной остановки (экстренной) автомобиля, а также для удержания на месте неподвижно стоящего автомобиля. Процесс торможения движущегося автомобиля заключается в создании искусственного сопротивления этому движению. Обычно уменьшение скорости автомобиля вплоть до полной его остановки осуществляется путем создания тормозных спя в контакте колес с дорогой, направленных в сторону, противоположную движению. Тормозные силы необходимы и для удерживания автомобиля на месте. Тормозная сила создается путем торможения колеса специальным, обычно фрикционным, устройством — тормозным механизмом. Наиболее высокая эффективность торможения требуется в экстренных случаях. Именно на это должна быть рассчитана тормозная система, хотя они составляют не более 1—3 % от общего числа использования тормозной системы. Требования, предъявляемые к тормозной системе: 1. Высокая эффективность — оценивается расстоянием, пройденным автомобилем за время торможения (тормозным путем), и обеспечивается небольшим временем срабатывания тормозной системы, достаточной величиной тормозных моментов и правильным распределением тормозных сил между передними и задними колесами. 2. Обеспечение устойчивости автомобиля при торможении — достигается, в частности, путем синхронности срабатывания тормозных механизмов и равенства тормозных сил по бортам автомобиля. 3. Высокая стабильность тормозных моментов, обеспечивающая выполнение предыдущих требований. 4. Обеспечение пропорциональности между управляющим усилием водителя и тормозным эффектом на всех режимах торможения и расторма- живания. 5. Удобство управления — по действующим нормам расчетное замедление автомобиля должно обеспечиваться при усилии водителя на педаль тормозной системы, не превышающем 500 Н для легковых и 700 Н для грузовых автомобилей. 6. Повышенная надежность; так как тормозная система играет определяющую роль в обеспечении активной безопасности автомобиля, должно быть гарантировано сохранение работоспособности ряда его элементов в течение всего срока службы автомобиля, независимо от условий его эксплуатации.
228 Раздел IV. Системы управления 2.2. Структура тормозных систем Согласно Правилам № 13 ЕЕК ООН «Единообразные предписания, касающиеся официального утверждения тормозных свойств транспортных средств» и выполнению тормозной системой указанных выше требований, автомобиль должен иметь несколько тормозных систем (тормозной системой автомобиля называется совокупность устройств, предназначенных для осуществления того или иного вида торможения), а именно: • рабочую тормозную систему; • стояночную тормозную систему; • запасную тормозную систему; • вспомогательную тормозную систему. Рабочая тормозная система позволяет водителю снижать скорость движения автомобиля и останавливать его при обычном режиме эксплуатации. Запасная тормозная система позволяет водителю уменьшать скорость движения автомобиля и останавливать его при неисправности рабочей тормозной системы. С целью упрощения конструкции отдельная (автономная) запасная система практически не применяется. Обычно ее роль выполняют оставшиеся исправные части (контуры привода) рабочей тормозной системы или специальным образом спроектированная стояночная тормозная система. Часто на больших автомобилях для повышения надежности используют одновременно оба указанных технических решения. Стояночная тормозная система позволяет удерживать автомобиль в неподвижном состоянии на наклонной поверхности и при отсутствии водителя. Вспомогательная тормозная система предназначена для длительного поддержания постоянной скорости, в основном на затяжных спусках. Используемые в остальных тормозных системах фрикционные тормозные механизмы при длительной работе перегреваются и резко снижают эффективность торможения. Поэтому на некоторых типах автомобилей (автобусы, грузовые автомобили большой грузоподъемности) для поддержания безопасной скорости на длительных спусках применяют вспомогательные механизмы, так называемые тормоза-замедлители. Автоматическая тормозная система — оборудование, автоматически затормаживающее прицеп при его случайном отделении от тягача. Антиблокировочная система (АБС) — часть рабочей тормозной системы, которая предотвращает блокировку одного или нескольких колес при торможении автомобиля. Управление силами торможения на колесах осуществляется на основе данных датчиков, контролирующих скорость вращения каждого колеса. Каждая тормозная система включает в себя следующие механизмы: • тормозной привод; • тормозные механизмы; • усилитель тормозного привода (для гидравлического привода). Привод тормозного механизма. Функциями привода тормозного механизма являются передача энергии от источника к исполнительным элементам, ее дозирование для обеспечения торможения с необходимой интенсивно-
Глава 2. Тормозная система 229 стью и правильное распределение энергии между тормозными механизмами разных колес. Приводы тормозных механизмов различают по виду используемой в них энергии. Они бывают механическими, гидравлическими, пневматическими, гидропневматическими, а также электропневматическими. Исполнительными элементами привода называют устройства, преобразующие давление используемого в приводе рабочего тела в приводную силу, предназначенную для приведения в действие тормозных механизмов. Тормозным механизмом называется устройство, служащее для непосредственного искусственного сопротивления движению автомобиля. Для всех тормозных систем, исключая вспомогательную, роль тормозного механизма выполняют фрикционные устройства с регулируемым моментом трения, создаваемым между вращающимися и неподвижными частями тормозных механизмов. 2.3. Приводы тормозных механизмов Для обеспечения возможности торможения в случае отказа какого-либо элемента рабочей тормозной системы привод тормозного механизма разделяют на независимые контуры, каждый из которых в случае отказа другого автоматически выполняет функцию запасной тормозной системы. Схемы образования независимых контуров могут быть различны, и эффективность торможения каждого из оставшихся контуров различна. 1. Один контур обслуживает тормозные механизмы передних колес, а другой — задних (простейший случай). 2. Один контур обслуживает тормозные механизмы переднего левого и заднего правого колес, а другой — переднего правого и заднего левого колес (диагональные контуры). 3. Один контур обслуживает тормозные механизмы всех передних и задних колес (большой контур), другой — тормозные механизмы передних колес (малый контур). 4. Один контур обслуживает тормозные механизмы передних колес и правое заднее, а другой — передние колеса и левое заднее (L-образный контур). 5. Один контур обслуживает тормозные механизмы передних и задних колес, другой — также обслуживает тормозные механизмы передних и задних колес. Наилучшими свойствами обладает последняя схема — схема разделения на контуры, предусматривающая полное сохранение тормозных качеств в случае отказа одного из контуров рабочей тормозной системы. Такая схема сложна и применяется в основном на дорогих легковых автомобилях. 2.4. Механический привод тормозных механизмов Механический привод тормозных механизмов был первым приводом автомобиля. Он прост по конструкции, не нуждается в преобразователе энергии, так как педаль или рычаг управления являются его частью.
230 Раздел /К Системы управления К недостаткам механического привода следует отнести: • трудность одновременного торможения всех колес и необходимого распределения тормозного усилия; • частые регулировки; • низкий КПД (0,4—0,6). Из-за указанных недостатков в настоящее время механический привод применяется ограниченно и в основном в стояночных тормозных системах благодаря неоспоримому своему преимуществу, заключающемуся в способности сохранять заданное усилие практически неограниченно долго, в отличие от гидравлических и особенно пневматических приводов, в которых давление рабочего тела постепенно снижается вследствие его утечек. Механический привод представляет собой систему рычагов, тяг, валиков, тросов, через которые усилие от педали или рычага управления передается к тормозным механизмам. Рис. 148. Стояночная тормозная система автомобилей ГАЗ-24-10 и ГАЗ-3102 «Волга»: / — рукоятка; 2 — рычаг управления; 3 и 8 — кронштейны; 4 — рычаг привода; 5 — направляющая троса; 6 — стяжная пружина; 7 — регулировочный эксцентрик; 9 — трос; 10 — уравнитель; 11 — тяга уравнителя; 12 — тяга рычага; 13 — выключатель контрольной лампы Механический привод стояночной тормозной системы легковых автомобилей (рис. 148) состоит из рычага с кнопкой, зубчатого сектора с собачкой, уравнительного рычага, тяг (троса), рычага привода кололок задних колес. 2.5. Гидравлические приводы тормозных механизмов Гидравлические приводы тормозных механизмов автомобилей (начало применения 1910— L915 гг.) гидростатические, в них передача энергии осуществляется жидкостью под давлением. Принцип действия гидростатиче-
Глава 2. Тормозная система 231 ского привода основан на свойстве не сжимаемости жидкости, находящейся в покое, способности передавать создаваемое в любой точке давление одинаково всем точкам замкнутого объема жидкости. Гидравлический привод (рис. 149) применяется в качестве привода рабочей тормозной системы легковых автомобилей и грузовых автомобилей малой и средней грузоподъемности. Преимущества гидравлического привода: • одновременность торможения всех колес (в принципе) и желаемое распределение тормозных сил; • высокий КПД — 0,9 и выше при нормальной температуре окружающей среды; • малое время срабатывания (экстренное торможение — 0,1 с); • простота конструкции и удобство компоновки. Недостатки гидравлического привода: • невозможность получения большого передаточного числа; • выход из строя при местном повреждении; • невозможность продолжительного торможения (большое давление, нагрев тормозных накладок приблизительно до 500 °С); • снижение КПД при низких температурах (увеличивается вязкость тормозной жидкости). Рис. 149. Схема гидропривода тормозных механизмов: / — тормозной механизм переднего колеса; 2 — трубопровод контура «левый передний — правый задний тормозные механизмы»; 3 — главный цилиндр гидропривода тормозных механизмов; 4 — трубопровод контура «правый передний — левый задний тормозные механизмы»; 5 — бачок главного цилиндра; б— вакуумный усилитель; 7 — тормозной механизм заднего колеса; 8 — упругий рычаг привода регулятора давления; 9 — регулятор давления; 10 — рычаг привода регулятора давления; 11 — педаль тормозной системы
232 Раздел IV. Системы управления Простейший гидравлический привод состоит из педали, главного тормозного цилиндра, трубопроводов, колесных рабочих цилиндров, регулятора давления. Главный тормозной цилиндр. Конструкции главных тормозных цилиндров могут быть различны, но принципы, положенные в их основу, общие. Так, во всех приводах тормозная магистраль в расторможенном состоянии (при отпущенной педали) сообщается с резервуаром. Это необходимо для компенсации: • утечек жидкости; • теплового расширения жидкости; • увеличения объема системы после регулирования зазоров между колодками и барабаном (диском) при износе тормозных накладок. Главный цилиндр тормозной системы (рис. 150) обеспечивает разделение контуров. Два резервуара (или один с разделительной перегородкой) сообщаются с полостью главного цилиндра тормозной системы через два отверстия. Поршни имеют кольцевые уплотнительные манжеты, прижимаемые пружинами. Наружная поверхность поршней имеет проточку для размещения уплотнительных колец, имеющих длину, которая меньше длины проточки. Помимо проточки поршни имеют кольцевые полости и плоские углообразные пазы, которые соединяются с резервуаром при любом положении поршней. Это препятствует попаданию воздуха в гидравлическую магистраль. Наиболее опасным, с точки зрения попадания воздуха в главный тормозной цилиндр, является режим растормаживания, который, как правило, производится быстро, броском педали. Жидкость, вследствие ее вязкости, возвращается в главный цилиндр относительно медленно, и поршни под действием пружин, стремясь оторваться от столба жидкости, создают в магистрали разряжение. Предотвратить при этом попадание воз- 16 А 15 14 13 Б 12 11 Ю 9 "g Рис. 150. Главный цилиндр тормозной системы автомобиля ГАЗ-53-12: 1 — клапан ограничения давления; 2 и 12 — корпуса; 3 и 8 — вторичный и первичный поршни; 4 — возвратная пружина поршня; 5 — соединительный стрежень; 6 — головки поршня; 7 — уплотнительное кольцо головки; 9 — толкатель; 10 — фиксирующий болт; 11 — манжета; 13 — уплотнительные кольца поршня; 14 — уплотнительное кольцо корпуса; 15 — пружина головки; 16 — упор вторичного поршня; 17 — пружина клапана избыточного давления; А и Б — полости; а — отверстие
Глава 2. Тормозная система 233 духа в магистраль одними уплотнениями сложно, поэтому с тыльной стороны поршней или в их самих располагают полости, заполненные жидкостью, и при любом положении поршней сообщаются с резервуаром с помощью отверстий. В корпусе ввернуты упорные болты, определяющие крайнее правое положение поршней и колец, соответствующее расторможенному состоянию системы. Конфигурация поршней такова, что в указанном крайнем положении кольца, упираясь в болты, отрывают манжеты от поршней, сообщая резервуары с магистралями. В начале торможения поршни, перемещаясь (один — под воздействием штока педали, другой — под давлением жидкости), надвигаются на манжеты, после чего жидкость начинает вытесняться в магистрали, В случае потери герметичности одного контура, питаемого, например, через левое отверстие, левый поршень, вытеснив жидкость через обрыв магистрали, упирается удлинителем в дно цилиндра, образовав для правой рабочей полости фиктивное дно. Если же разгерметизация произойдет в контуре, подпитываемом из правой полости, то правый поршень, вытеснив жидкость, упрется удлинителем в левый поршень, передавая на него усилие со стороны штока. В современных конструкциях главных цилиндров тормозных систем в резервуар помещают поплавок с электроконтактами для сигнализации о недопустимо низком уровне жидкости. При заправке привода тормозной жидкостью, иногда и при эксплуатации автомобиля, из тормозной системы необходимо удалять воздух. Для этого в самых высоких местах рабочих цилиндров, а если требуется, то и в других местах привода, устанавливают клапаны прокачки. Колесные рабочие цилиндры. Рабочие цилиндры (рис. 151) имеют чугунный или, реже, из легкого сплава корпус и поршни с уплотнительными Рис. 151. Колесные цилиндры гидропривода тормозных механизмов: а — двухпоршневой; б — однопоршневой; 1 — перепускной клапан; 2 — пробка; 3 — толкатель; 4 — резиновый чехол; 5 — корпус цилиндра; 6 — поршень; 7 — резиновая манжета; 8 — пружина
234 Раздел IV. Системы управления манжетами. Регулировка зазоров производится между фрикционными накладками и барабаном автоматически. На поршень рабочего цилиндра надевается разрезное пружинящее кольцо. Между кольцом и поршнем имеется радиальный и осевой зазоры. Величина осевого зазора нормируется и соответствует необходимой величине зазора между колодкой и барабаном. Радиальная упругость кольца также нормируется с целью получения определенной величины силы трения между кольцом и цилиндром. Указанная сила трения должна гарантированно превышать силу возвратных пружин, приведенную к поршню, но не быть чрезмерной, чтобы не слишком сильно снижать приводную силу поршня. Для регулировки механизма после сборки необходимо нажать на педаль тормозной системы. Поршни рабочих цилиндров, перемещаясь наружу под действием давления жидкости, выберут имевшийся между ними и упругими кольцами осевой зазор, после чего потянут кольца за собой. Движение поршней будет продолжаться до тех пор, пока колодки не упрутся в барабан. При отпускании педали возвратные пружины смогут переместить поршни назад только на величину, соответствующую осевому зазору между поршнем и кольцом, так как сдвинуть кольцо они не в состоянии. Величина же зазора, как было сказано выше, соответствует необходимому зазору между колодкой и барабаном. Таким образом, по мере изнашивания накладок кольцо будет перемещаться вдоль цилиндра, поддерживая постоянную величину зазора в механизме. Регулятор давления корректирует давление тормозной жидкости в системе задних тормозных механизмов в зависимости от изменения нагрузки на задние колеса. Регулятор (рис. 152) состоит из корпуса, в котором установлена гильза поршня. В углубление на гильзе вставляется шарик, который удерживается пружиной. В гильзе перемещается поршень, на конце которого крепится управляющий конус. Возвратная пружина поршня удерживает его в исходном положении при неработающем регуляторе. В корпус регулятора ввернута втулка, на конце которой установлен защитный резиновый чехол. В подпоршневую полость регулятора поступает жидкость от главного тормозного цилиндра, а из надпоршневой полости выходит жидкость для приведения в действие колесных цилиндров задних тормозных механизмов. До вступления в действие регулятора давление жидкости одинаково как в обеих полостях, так и в любой точке гидропривода, так как перепускной шарик полнят управляющим конусом, что обеспечивает свободное прохождение тормозной жидкости из подпоршневой полости в надпоршневую. При торможении увеличивается расстояние между кузовом и задним мостом, уменьшается нагрузка на задние колеса и соответственно уменьшается сила, действующая со стороны упругого элемента (крепится к полу кузова и к нажимному рычагу поршня регулятора) на поршень регулятора. Когда усилие со стороны жидкости на головку поршня превысит сумму усилий упругого элемента и жидкости на меньшую (подпоршневую) площадь поршня, последний переместится в сторону нажимного рычага, а управляющий конус освободит шарик, который под действием прижимной пружины перекроит доступ жидкости из подпоршневой полости в надпоршневую. С этого момента давление в подпоршневой полости будет
Глава 2. Тормозная система 235 Рис. 152. Регулятор давления жидкости в тормозных механизмах задних колес автомобилей марки «ВАЗ» семейства «Жигули»: а — расположение регулятора на автомобиле; б — схема работы; / — поршень-клапан открыт; // — поршень-клапан закрыт; 1 — кронштейн; 2 — болт крепления регулятора к кронштейну кузова; 3 — поршень-клапан; 4 — корпус регулятора; 5 — палец; 6 — тяга; 7 и 15 — торсионные рычаги; 8 — скоба; 9 — вилка; 10 — штуцер трубопровода, подводящего жидкость из главного цилиндра; 11 — штуцер трубопровода, отводящего жидкость из регулятора к колесным цилиндрам; 12 — корпус; 13 — распорное кольцо; 14 — уплотнительное кольцо; 16 — гнездо уплотнительного кольца; 17 — пружина поршня; 18 — упорное кольцо; 19 — уплотнительное кольцо клапана; 20 — пробка; 21 — прокладка; А и В — полости; Б — отверстие для штуцера трубопровода от главного цилиндра; Г — отверстие для штуцера трубопровода к тормозным механизмам задних колес; Р — сила, действующая на поршень от торсионного рычага при уменьшении расстояния от кузова до заднего моста выше давления в надпоршневой, обслуживающей задние тормозные механизмы. После снятия усилия с педали тормозной системы поршень регулятора возвратится в исходное положение, а управляющий конус, приподняв шарик, откроет доступ жидкости из подпоршневой полости в над- поршневую. 2.6. Пневматический привод Основным недостатком гидравлических приводов является ограниченность приводных сил, действующих на колодки тормозных механизмов. В приводах, не имеющих усилителя, величина приводных сил лимитируется физическими возможностями человека. Гидравлические приводы, снаб-
236 Раздел IV. Системы управления женные усилителями, позволяют получить несколько большие тормозные моменты, но их возможности ограничены. В усилителях, использующих разницу атмосферного и пониженного давления, из-за относительно небольшой величины этой разницы приходится увеличивать диаметр силовой диафрагмы, что влечет за собой увеличение размеров усилителя. Пространство, которое может быть отведено для усилителя, ограничено. Поэтому на автомобилях полной массой более 9 т применяют пневматический привод, который может создавать практически неограниченное приводное усилие со стороны тормозных механизмов (в автомобилестроении пневматический привод применяется с 1948 г.). Основными элементами пневматического привода (рис. 153) является компрессор, ресиверы (воздушные баллоны), хранящие запас сжатого воздуха, кран, магистрали и исполнительные элементы, воздействующие на разжимные устройства тормозных механизмов. При торможении автомобиля кран соединяет ресиверы с магистралями, устанавливая в них давление воздуха, пропорциональное силе, приложенной водителем к тормозной педали. При снятии усилия с тормозной педали кран отсоединяет магистрали от ресиверов и соединяет их с окружающей средой. Подобно гидравлическому, пневматический привод разделяется на контуры, причем отдельные контуры имеют свои ресиверы и управляются отдельной секцией крана. Особенно часто пневматический привод используется на автопоездах. Исполнительные механизмы привода тормозной системы прицепа (полуприцепа) питаются от установленных на них отдельных ресиверов и дополнительного крана, который называется воздухораспределителем. Соединение тормозных систем тягача и прицепа может быть однопро- водным или двухпроводным. При однопроводном приводе прицеп соединен с тягачом с помощью одной магистрали, через которую осуществляется как наполнение ресиверов прицепа сжатым воздухом, так и передача на прицеп команд на торможение с заданной водителем интенсивностью. Преимуществом однопроводного привода тормозной системы прицепа является простота, а также то, что при отрыве автопоезда он автоматически, без применения дополнительных устройств, затормаживает прицеп вследствие того, что давление в разорвавшейся соединительной магистрали падает до нуля. В двухпроводном приводе посредством одной магистрали, связывающей тягач с прицепом (питающей), постоянно пополняется запас сжатого воздуха в ресиверах прицепа, а другая (управляющая), давление в которой изменяется прямо пропорционально давлению в тормозных магистралях тягача, управляет воздухораспределителем прицепа. Обеспечивая высокое усилие, пневматический привод имеет массу, гораздо большую массы эквивалентного по эффективности гидравлического привода, заметно выше его стоимость (автомобиль марки «КамАЗ» 25 аппаратов на тягаче, длина трубопроводов 70 м, в шести ресиверах 180 м3 сжатого воздуха). Время срабатывания такого привода весьма велико—у одиночных автомобилей составляет 0,4—0,7 с, а у автопоездов может достигать 1,5 с, время растормаживания — 1,2 с.
237
238 Раздел IK Системы управления 2.7. Тормозные механизмы Исполнительными элементами привода называются устройства, преобразующие давление используемого в приводе рабочего тела в приводную силу, предназначенную для приведения в действие тормозных механизмов. Тормозным механизмом называют устройство, служащее для непосредственного создания искусственного сопротивления движению автомобиля. Для всех тормозных систем, исключая вспомогательную, роль тормозного механизма выполняют фрикционные устройства с регулируемым моментом трения, создаваемым между вращающимися и неподвижными частями тормозных механизмов. Фрикционные тормозные механизмы по виду вращающейся детали делятся на барабанные и дисковые; по типу неподвижной детали — на колодочные и ленточные. Наиболее распространены колодочные тормозные механизмы. Барабанные тормозные механизмы. Тормозной механизм рабочей тормозной системы автомобиля представляет собой неподвижный тормозной щит, на котором смонтированы две тормозные колодки, опирающиеся на один общий или два отдельных пальца (оси) и стянуты пружиной. С наружной стороны находится барабан, который крепится к ступице колеса и вращается вместе с ней. К поверхности колодок, обращенной к тормозному барабану, прикреплены фрикционные накладки. При торможении колодки раздвигаются кулаками или поршнями гидроцилиндра до соприкосновения с тормозным барабаном. Трение колодок о барабан вызывает торможение колес. После прекращения воздействия на тормозную педаль колодки возвращаются в исходное положение стяжной пружиной. Различия в устройстве и работе во многом зависят от расположения опор колодок и характера приводных сил. На рис. 154, в приведена схема тормозного механизма, в котором колодки раздвигаются равными приводными силами Рх и Р2, так как поршни гидроцилиндра имеют одинаковые диаметры. /^ и Ry2 — реакции барабана на колодки. Возникающие силы трения между колодками и барабанами соответственно /^ и Д^. Момент силы В^х относительно опоры колодки действует в ту же сторону, что и момент силы Р{9 увеличивает прижатие колодки. Такая колодка называется первичной. Момент силы /?х2 направлен в обратную сторону относительно силы Р2 и, следовательно, ослабляет прижатие колодки к барабану — такая колодка называется вторичной. При такой конструкции первичная колодка будет постоянно находиться под действием большей силы трения и быстрее износится, чем вторичная. Поэтому в этом случае для равномерного изнашивания фрикционную накладку на первичной колодке делают больших размеров, чем на вторичной. При размещении опор колодок на противоположных сторонах тормозного щита (рис. 154, г) на обе колодки действуют одинаковые силы Рг = Р2. Момент силы трения ^ и Д,2 будет направлен в ту же сторону, что и момент силы Р, и, следовательно, обе колодки работают как первичные. Этот тормозной механизм не создает дополнительных нагрузок на подшипники
Глава 2. Тормозная система 239 г) д) е) Рис. 154. Схемы расположения колодок барабанных тормозных механизмов: а — на общей опоре; б и в — на отдельных опорах с раздвигающими усилиями соответственно от кулака и поршней гидроцилиндра; г — с размещением опор на противоположных сторонах тормозного диска; д — плавающих; е — с опорой на подвижный упор; 1 — колодка; 2 — фрикционная накладка колодки; 3 — тормозной барабан; 4 — разжимной кулак; 5 — стяжная пружина; 6 — пальцы колодок колес, так как силы, действующие на тормозной барабан, равны по величине и уравновешены в одинаковой степени. На рис. 154, д дана схема «плавающих» колодок. Нижние концы пружиной прижимаются к трапециевидному упору, закрепленному на тормозном щите. Концы колодок могут перемещаться по боковым граням упора. В этом случае силы трения затягивают колодки в направлении вращения барабана, давая им возможность самоустанавливаться по внутренней поверхности барабана. Тормозной механизм с серводействием представлен на схеме рис. 154, е. При действии разжимающего устройства на верхние концы колодок левая колодка, имеющая более слабые пружины, первой прижимается к барабану и через подвижный нижний упор передает усилие на правую колодку, прижимая ее к барабану, обе колодки действуют как первичные. По схеме, показанной на рис. 154, я, выполнены тормозные механизмы автомобиля МАЗ-5335. Автомобили марок «КамАЗ» и «ЗИЛ» (рис. 155 и 156) имеют тормозные механизмы, конструкция которых соответствует схеме, показанной на рис. 154, 6. Тормозные механизмы передних и задних колес указанных автомобилей имеют одинаковую конструкцию и отличаются только размерами деталей. Тормозной механизм автомобиля ГАЗ-53-12 (рис. 155, а) выполнен по схеме, показанной на рис. 154, в, у ав-
240 Раздел IV, Системы управления б) в) Рис. 155. Тормозные механизмы автомобилей: а ГАЗ-53-12; 6 ЗИЛ-4314.10; в — МАЗ-5335; 1 и 5 — тормозные колодки; 2 — колесный тормозной цилиндр; 3 — экран колесного тормозного цилиндра; 4 — стяжная пружина; 6 — фрикционная накладка колодки; 7 — направляющая скоба колодки; 8 — болт регулировочного эксцентрика; 9 — шайба; 10 — пружина эксцентрика; 11 — регулировочный эксцентрик; 12 — пластина опорных пальцев; 13 — эксцентрик опорных пальцев; 14 — пружинная шайба; 15 — опорный палец тормозной колодки; 16 — суппорт; П — ось; 18 — опора ролика; 19 — ролик; 20 — разжимной кулак; 21 — тормозной барабан томобилей «Волга» по такой схеме выполнены лишь задние тормозные механизмы. По схеме, приведенной на рис. 154, е, выполнен стояночной тормозной механизм автомобиля ГАЗ-53-12. В тормозном механизме автомобилей марки «КамАЗ» тормозные колодки опираются на эксцентрики осей, закрепленных на тормозном щите (суппорте). На тормозные колодки установлены фрикционные накладки. При торможении колодки раздвигаются кулаком и прижимаются к внутренней поверхности барабана. Ролики, установленные между разжимным кулаком и колодками, улучшают эффективность торможения. Пружины возвращают при растормаживании колодки в первоначальное положение.
Глава 2. Тормозная система 241 Рис. 156. Тормозные механизмы автомобилей КамАЗ-5320 и МАЗ-5335: а ~ колесный тормозной механизм автомобиля КамАЗ-5320; б — регулировочный рычаг тормозного механизма автомобиля КамАЗ-5320; в — колесный тормозной механизм автомобиля МАЗ-5335; / — ось колодок; 2 — суппорт; 3 — щиток; 4 — гайка оси; 5 — накладка оси колодок; 6 — чека оси колодки; 7 — колодка; 8 — пружина; 9 — фрикционная накладка; 10 — кронштейн разжимного кулака; И — ось ролика; 12 — разжимной кулак; 13 — ролик колодки; 14 — регулировочный рычаг; 15 — ось червяка; 16 — шарик фиксатора; 17 — червяк; 18 — червячное колесо; 19 — распорная втулка; 20 — барабан; 21 — тормозная камера; 22 — вилка; 23 — шток; 24 — мембрана На конце вала разжимного кулака на шлицах установлен регулировочный рычаг червячного типа, соединенный со штоком тормозной камеры и предназначенный для поворота разжимного кулака и уменьшения зазора между колодками и тормозным барабаном. В корпусе регулировочного ры-
242 Раздел IV. Системы управления чага установлен червяк с запрессованной в него осью, имеющий квадратный хвостовик для осуществления поворота при регулировании и лунки для фиксирующего шарика с пружиной. При вращении оси червяк поворачивает червячное колесо и через шлицевое соединение ось поворотного кулака. В процессе торможения регулировочный рычаг поворачивается штоком тормозной камеры. В тормозном механизме задних колес автомобиля ГАЗ-53-12 тормозной щит прикреплен к фланцу кожуха полуоси ведущего моста, а тормозной щит переднего тормозного механизма — к фланцу поворотного кулака переднего моста. Тормозные колодки свободно посажены на опорных пальцах (осях). На наружных концах пальцев поставлены метки для регулирования и сделаны головки под ключ. В верхней части колодки опираются на регулировочные эксцентрики, под которые поставлены фиксирующие пружины. Зазор между колодками и барабаном регулируют с помощью эксцентриков. К трущимся поверхностям колодок прикреплены имеющие различный угол охвата накладки. Верхние концы колодок упираются в поршни колесных цилиндров, которые защищены от нагрева экраном. От бокового смещения колодки удерживаются скобами с пластинчатыми пружинами. Тормозной барабан прикреплен к ступице колеса. Дисковые тормозные механизмы. В настоящее время на передних колесах легковых автомобилей устанавливают дисковые тормозные механизмы. По сравнению с барабанными они обладают более высокой эффективностью. Поскольку на передние колеса автомобиля при торможении приходится более значительная часть тормозных сил, оснащение передних колес дисковыми тормозными механизмами улучшает эксплуатационные свойства автомобиля. Тормозные механизмы с вращающимся диском отличаются способом установки невращающейся детали. Различают механизм с неподвижной скобой и механизм с плавающей скобой. Конструкция дискового механизма с неподвижной скобой (рис. 157, а и б) состоит из тормозного диска, закрепленного на ступице колеса, который с двух сторон охвачен скобой, имеющего внутри гидроцилиндры, поршни которых прижимают к диску с двух сторон тормозные колодки, в результате чего происходит торможение. Подвижная (плавающая) скоба (рис. 157, д) может перемещаться перпендикулярно плоскости тормозного диска. При неподвижной скобе под действием поршней колодки одновременно с двух сторон прижимаются к диску, в этом случае получается более жесткая, но чувствительная к перегреву конструкция. При подвижной плавающей скобе поршень, расположенный с одной стороны скобы, прижимаясь к вращающему диску, заставляет перемешать скобу, тем самым прижимая к диску вторую неподвижную колодку, расположенную с другой стороны. В этом случае торможение происходит более равномерно. Дисковый тормозной механизм передних колес автомобиля ГАЗ-3102 состоит из тормозного диска, закрепленного на ступице колеса, и скобы, прикрепленной к поворотному кулаку. Скоба состоит из внутреннего и наружного корпуса, которые неподвижно соединены между собой. Каждый корпус имеет по два цилиндра, выполненных как одно целое с корпусом. Большие цилиндры (0 42,28 мм) внутреннего и наружного корпусов соеди-
Глава 2. Тормозная система 243 а> 6) Рис. 157. Дисковые тормозные механизмы: а и б — схемы дисковых тормозных механизмов с неподвижной и подвижной скобой; в и г — общий вид и разрез по цилиндрам тормозного механизма передних колес автомобиля ГАЗ-3102 «Волга»; д — переднего колеса автомобиля АЗЛК-2141; 1 — диск; 2 и 5 — половинки скобы; 3 — гидроцилиндры; 4 — каналы; 6 — тормозные колодки; 7 — шланги; 8 — поворотный рычаг; 9 — стойка передней подвески; 10 — грязезащитный диск; 11 — шпильки крепления колодок; 12 — клапаны выпуска воздуха; 13 и 16— резиновые кольца; 14 и 75— малый и большой поршни соответственно; 17 — тормозной щит; 18 — корпус цилиндров; 19 — суппорт; 20 — рама нены между собой каналами (малый контур). Такими же каналами (большой контур) соединены и малые цилиндры (0 33,96 мм). Дисковый тормозной механизм передних колес с подвижной (плавающей) скобой автомобиля АЗЛК-2141 (рис. 157, д) имеет скобу, состоящую из чугунного суппорта, рамы и алюминиевого корпуса цилиндров, в которых перемещаются два стальных хромированных поршня разных диаметров (меньший — большого контура, больший — малого контура). Рама вместе с корпусом гидроцилиндров имеет возможность перемещаться в направлении, перпендикулярном рабочим поверхностям тормозного диска. 2.8. Тормозные механизмы стояночной тормозной системы В барабанном тормозном механизме стояночной тормозной системы автомобиля ГАЗ-53-12 (см. рис. 154, ё) к задней стенке картера коробки передач прикреплен тормозной щит (рис. 158, а). На нем установлены корпуса регулировочного и разжимного механизмов. С регулировочным меха-
244 Раздел IV. Системы управления Б-Б А-А 15 16 17 1В 19 20 а) Рис. 158. Стояночные тормозные системы автомобилей: а — ГАЗ-53-12; 6 — ЗИЛ-4314Л0; У— рычаг управления; 2 ~ зубчатый сектор; 3 — защелка; 4 — тяга; 5 — контргайка; 6 — вилка; 7 — рычаг; 8 — барабан; 9 а 12 — тормозные колодки; 10 и 13 — стяжные пружины; 11 — тормозной щит; 14 — вал регулировочного механизма; 15 — опора колодок; 16 — сухарь; 17 — корпус регулировочного механизма; 18 — толкатель; 19 — шарики; 20 — корпус разжимного механизма; 21 — разжимной стержень; 22 — фрикционная накладка; 23 — манжета кронштейна; 24 и 30— малая и большая оттяжные пружины колодок соответственно; 25 — ось колодок; 26 — винт; 27 ~ фланец ведомого вала коробки передач; 28 — регулировочный болт; 29 — ограничительная шайба; 31 — сухарь колодки; 32 — разжимной кулак; 33 — регулировочный рычаг; 34 — тяга привода; 35 — ушко тяги тормозного крана; 36 — палец тяги; 37 — пластина рычага; 38 — тяга стопорной защелки; 39 — рукоятка тяги стопорной защелки низмом соединен сухарь, на который опираются нижние опоры тормозных колодок. Верхние толкатели колодок опираются на два шарика, помещенных в канале разжимного стержня. Тормозной барабан прикреплен к фланцу ведомого вала коробки передач. В последнее время наметилась тенденция отказа от трансмиссионных стояночных тормозных механизмов, так как на больших уклонах они недостаточно надежны, а в случае поломки карданной передачи вообще не осуществляют торможения.
Глава 2. Тормозная система 245 В настоящее время большинство грузовых автомобилей седельных тягачей не имеют отдельных тормозных механизмов для стояночной тормозной системы, для этого используют отдельный привод на тормозные механизмы рабочей тормозной системы задних колес. 2.9. Усилители тормозных приводов Для облегчения работы водителя при торможении и сокращения тормозного пути автомобиля в гидравлических тормозных приводах применяют усилители, которые для работы используют разряжение во впускном трубопроводе двигателя. Если данный усилитель расположен между тормозной педалью и главным цилиндром, его называют вакуумным. Если усилитель включен непосредственно в гидравлическую часть привода, его называют гидровакуумным. Гидровакуумный усилитель (рис. 159) состоит из трех частей: гидроцилиндра, вакуумной камеры и клапана управления. В цилиндре гидровакуумного усилителя, соединенного с главным цилиндром, перемещается поршень с шариковым клапаном. Поршень связан с толкателем штифтом, который плотно прилегает к отверстию поршня, а с отверстием толкателя образует некоторый зазор. В поршне выполнены прорезы для толкателя клапана, представляющего собой плоскую скобу с шипом на конце, которая может перемещаться относительно поршня на небольшую величину. В цилиндре установлены перепускной клапан для выпуска воздуха и штуцер для подсоединения трубопроводов. Перемещение поршня ограничено упорной шайбой со стороны вакуумной камеры. Корпус вакуумной камеры состоит из двух штампованных чашек, связанных хомутами. Между чашками, поджимаемыми пружиной, соединенной через тарелку с толкателем поршня, зажаты края мембраны. Левая полость вакуумной камеры перед мембраной соединена шлангом с полостью корпуса клапана управления, а правая полость за мембраной — с впускным трубопроводом двигателя. Клапан управления состоит из поршня и мембраны, зажатой между двумя частями корпуса клапана управления. В центре мембраны крепится седло вакуумного клапана. Вакуумный и воздушный клапаны соединены стержнем, удерживаемым в нижнем положении пружиной. Воздушный фильтр сообщается с окружающей средой. В исходном положении под воздействием пружины воздушный клапан, находящийся на одном стержне с вакуумным клапаном, закрыт. При этом правая полость вакуумной камеры, где создалось разряжение, сообщается через открытый вакуумный клапан с левой полостью. Мембрана вакуумной камеры находится в состоянии покоя. Под действием силы, приложенной к тормозной педали, жидкость из главного цилиндра по трубопроводу поступает в гидроцилиндр усилителя и через открытый шариковый клапан поступает к колесным тормозным цилиндрам. При увеличении силы, действующей на педаль, давление жидко-
246 Раздел IV. Системы управления А 1 2 3 4 К тормозным механизмам Рис. 159. Гидровакуумный усилитель тормозного привода автомобиля ГАЗ-53-12: а и 6 — положение шарикового клапана при неработающем и работающем усилителе соответственно; 1 — мембрана; 2 — корпус усилителя; 3 — тарелка мембраны; 4— толкатель поршня; 5 — пружина мембраны; 6 — вакуумный клапан; 7— воздушный клапан; 8 — крышка корпуса клапана управления; 9 — пружина воздушного клапана; 10 — корпус клапана управления; 11 — пружина вакуумного клапана; 12 — мембрана клапана управления: 13 — поршень клапана управления; 14 — перепускной клапан; 15 — цилиндр; 16 — шариковый клапан; 17 — толкатель клапана; 18 — поршень; 19 — манжета поршня; 20 — упорная шайба поршня; 21 — штифт; 22 — главный цилиндр; 23 — запорное устройство; Л—Ж — полости; а и б — зазоры
Глава 2. Тормозная система 247 сти возрастает, и поршень клапана управления вместе с мембраной и седлом вакуумного клапана поднимается вверх, преодолевая сопротивление возвратной пружины мембраны. При этом седло прижимается к вакуумному клапану, вследствие чего полости мембраны усилителя разобщатся. При дальнейшем перемещении поршня и движения вакуумного клапана, связанного стержнем с воздушным клапаном, последний открывается, преодолевая сопротивление своей пружины, в результате чего воздух из окружающей среды поступает из полости клапана управления в левую полость вакуумной камеры усилителя. Правая полость вакуумной камеры остается соединенной с впускным трубопроводом двигателя. Из-за разности давлений в полостях вакуумной камеры ее мембрана прогибается, перемещая вместе со штоком и поршень гидроцилиндра. Шариковый клапан закрывается, и поршень гидроцилиндра создает дополнительное давление на жидкость, в колесных тормозных цилиндрах давление увеличивается. Следящее действие клапана управления обеспечивает пропорциональность усилия, прикладываемого к тормозной педали, и дополнительного усилия, развиваемого гидровакуумным усилителем. При торможении автомобиля давление тормозной жидкости, действующее на поршень клапана управления снизу, и давление пружины клапана и воздуха сверху в какой-то момент находятся в равновесии. Мембрана клапана управления опускается вниз, воздушный клапан закрывается, и поступление воздуха в левую полость вакуумной камеры прекращается. Если водитель сильнее нажмет на педаль, то под действием дополнительной порции тормозной жидкости поршень клапана управления поднимется, равновесие нарушится, воздушный клапан вновь приоткроется, впустив дополнительную порцию воздуха в левую полость вакуумной камеры. Давление на мембрану вакуумной камеры увеличится, соответственно возрастет усилие, создаваемое поршнем гидроцилиндра усилителя, затем вновь наступит состояние равновесия. При растормаживании давление жидкости, действующей на поршень клапана, снижается. Мембрана клапана опускается, воздушный клапан закрывается, вакуумный клапан открывается. Левая полость вакуумной камеры сообщается с правой, и давление в обеих камерах становится одинаковым. Возвратная пружина мембраны вакуумной камеры возвратит толкатель вместе с поршнем гидроцилиндра в исходное положение. Толкатель клапана, дойдя до упорной шайбы, остановит и откроет своим шипом шариковый клапан. При остановке двигателя запорный клапан автоматически разъединяет гидровакуумный усилитель и впускной трубопровод, вследствие чего в усилителе поддерживается низкое давление, позволяющее выполнить одно-два торможения при неработающем двигателе. Вакуумный усилитель. В корпусе усилителя (рис. 160) размещается мембрана и поршень, обеспечивающий ее деформацию путем удлинения ее цилиндрической направляющей. В трубчатой части поршня располагается плоский клапан, взаимодействующий с двумя седлами, наружным и внутренним. Наружное седло принадлежит телу поршня и позволяет разобщать левую и правую полости усилителя. Внутреннее седло принадлежит плунжеру, связанному со штоком тормозной педали.
248 Раздел IV. Системы управления Рис. 160. Вакуумный усилитель тормозного привода автомобиля «Москвич-2140»: а — конструкция; 6 — усилитель не работает; в — начало работы; 1 — опорный диск мембраны; 2 — опорная тарелка; 3 и 7 — возвратные пружины; 4 — центральный клапан; 5 — стопорная шайба; 6 — шток; 8 — опорное кольцо мембраны; 9 — обратный клапан; 10 — крышка корпуса; 11 — соединительное кольцо; 12 — мембрана; 13 — основание корпуса; 14 — опора толкателя; 15 — поршень; 16 — прижимная втулка; 17 — толкатель поршня; 18 — фильтр; 19 — вилка толкателя; 20 — направляющее кольцо; 21 — регулировочный винт; 22 — кольцевой упор; А я В — полости; а и б — каналы; в — зазор
Глава 2. Тормозная система 249 В расторможенном состоянии при отпущенной педали седло внутреннего клапана прижато к клапану, а между наружным седлом и клапаном имеется щель, соединяющая каналом левую и правую (от тормозной педали) полость, в результате чего в обеих полостях устанавливается одинаковое низкое давление. При нажатии на педаль плунжер выбирает зазор, после чего продолжает движение влево вместе с поршнем и, толкая перед собой резиновый диск, вызывает срабатывание главного цилиндра. Одновременно происходит закрытие наружного клапана и открытие внутреннего клапана. Воздух через фильтр и канал поступает в правую полость усилителя. Перепад давлений между полостями создает силу, которая через пружину передается на шток главного цилиндра, суммируясь с силой, прикладываемой к этому штоку водителем через педаль, шток и плунжер. Давление воздуха в правой полости, определяющее силу, создаваемую усилителем, устанавливается в момент закрытия внутреннего клапана. Недостатком данной конструкции усилителя является то, что он, будучи конструктивно связан с тормозной педалью, может располагаться только в двигательном отсеке, который в современных автомобилях недостаточно большой. Поэтому на легковых автомобилях применяют исполнительный механизм усилителя, состоящий из двух мембран, что позволяет уменьшить диаметр усилителя. 2.10. Двухконтурные тормозные приводы Тормозные системы большинства легковых автомобилей состоят из рабочей тормозной системы, стояночной тормозной системы, запасной тормозной системы. Рабочая тормозная система включает в себя: • тормозной привод; • тормозные механизмы; • усилитель тормозного привода. Тормозной привод легковых автомобилей гидравлический двухкон- турный. Контуры могут быть следующими: • два передних колеса и два задних; • диагональный — переднее левое, правое заднее колесо и переднее правое, заднее левое; • большой и малый — передние и задние колеса и только передние; • L-образный — два передних колеса, правое заднее и два передних колеса, левое заднее. Тормозной привод включает в себя тормозную педаль, главный цилиндр, трубопроводы, регулятор давления (регулятор тормозных сил), колесные рабочие тормозные цилиндры. Тормозные механизмы задних колес — барабанно-колодочного типа, передних колес — дисковые. Усилитель тормозного привода вакуумный.
250 Раздел /К Системы управления Стояночная тормозная система включает в себя тормозной привод и тормозные механизмы. Тормозной привод состоит из рычага управления с рукояткой и кнопкой, кронштейна с зубчатым сектором и собачкой, тяги рычага, уравнительного рычага, троса с направляющей, регулировочного эксцентрика, приводного рычага колодок, выключателя контрольной лампы. В качестве тормозных механизмов используются тормозные механизмы рабочей тормозной системы задних колес. Запасная тормозная система — используется один из контуров рабочей тормозной системы и стояночная тормозная система. Тормозные системы автомобилей ГАЗ-53-12 и ГАЗ-66-11 (рис. 161) включают в себя: • рабочую тормозную систему; • стояночную тормозную систему; • запасную тормозную систему. Рабочая тормозная система включает в себя: • тормозной привод; • тормозные механизмы; • усилитель тормозного привода. Тормозной привод гидравлический двухконтурный — контур передних колес и контур задних колес. Тормозной привод включает в себя сдвоенный главный цилиндр, трубопроводы, сигнализатор неисправности гидропривода, колесные рабочие тормозные цилиндры. Сдвоенный главный цилиндр состоит из первичного и вторичного поршней, на которых с помощью соединительных стержней установлены плавающие головки поршней, выполняющие роль перепускных клапанов. При расторможенном состоянии колес между головками и поршнями име- Рис. 161. Схема гидропривода двухконтурной тормозной системы автомобиля ГАЗ-53-12: 1 — передний тормозной механизм; 2 — впускная труба двигателя; 3 — запорный клапан; 4 — лампа сигнализатора; 5 — сигнализатор неисправности гидропривода; 6 — главный цилиндр; 7 — наполнительный бачок; 8 — воздушный фильтр; 9 — задний тормозной механизм; 10 — задний гидровакуумный усилитель; 11 — передний гидровакуумный усилитель
Глава 2. Тормозная система 251 ются зазоры, следовательно, предпоршневые полости сообщаются с бачком. При торможении поршни перемещаются, прижимаются к головкам, чему способствуют пружины и уплотняющие кольца головок, предпоршневые полости разобщаются с бачком, поршни через клапаны избыточного давления создают давление жидкости в приводах соответственно передних и задних колес. Клапан избыточного давления состоит из металлического диска с шестью отверстиями, резинового корпуса и пружины. При торможении жидкость под давлением, пройдя через отверстия и отгибая края резинового корпуса, поступает в колесные тормозные цилиндры. При расторма- живании поршни возвращаются в исходное положение, жидкость, преодолевая сопротивление пружины клапана избыточного давления, открывает клапан и возвращается в полости цилиндров, а затем, когда давление жидкости падает, пружина прижимает клапан к корпусу, края которого закрывают отверстия и в приводах сохраняется небольшое избыточное давление. При неисправности контура передних колес вторичный поршень движется вхолостую до упора соединительного стержня, работа тормозного привода задних колес при этом происходит обычным порядком. При нарушении привода задних колес первичный поршень через соединительный стержень и упор приводит в движение вторичный поршень, который подает жидкость в привод передних колес. Тормозные механизмы передних и задних колес барабанно-колодочно- го типа. Тормозной механизм состоит из тормозного щита, двух колодок с фрикционными накладками и стяжными пружинами и тормозного барабана. Усилитель тормозного привода. Автомобили имеют два гидровакуумных усилителя — один передний обслуживает контур передних колес, второй обслуживает контур задних колес. Стояночная тормозная система включает в себя тормозной привод, тормозные механизмы. Тормозной привод механический трансмиссионный, воздействует на механизмы трансмиссии. Тормозные механизмы барабанно-колодочного типа установлены на деталях коробки передач. Запасная тормозная система — один из контуров рабочей тормозной системы. 2.11. Многоконтурные тормозные приводы Многоконтурные тормозные приводы обеспечивают современные требования безопасности движения автомобиля. Многоконтурный тормозной привод с независимой работой каждого контура применяется на автомобилях марок «КамАЗ», «ЗИЛ», «МАЗ» и различных автобусах. В тормозных системах этих автомобилей много общего, как в назначениях отдельных контуров, так и в используемых приборах.
252 Раздел IV. Системы управления Тормозная система автомобиля КамАЗ-5320 (рис. 162) включает в себя: • рабочую тормозную систему; • стояночную тормозную систему; • запасную тормозную систему; • вспомогательную тормозную систему; • систему аварийного растормаживания; • выводы для питания сжатым воздухом прицепов и полуприцепов. В тормозной системе имеется пять независимых контуров: • контур привода рабочей тормозной системы передних колес; • контур привода рабочей тормозной системы колес задней тележки; • контур привода стояночной и запасной тормозных систем; • контур привода вспомогательной тормозной системы и других потребителей сжатого воздуха; • контур аварийного растормаживания тормозного механизма стояночной тормозной системы. Независимость действия каждого контура обеспечивается специальными двух- и трехсекционными клапанами. Выдерживается и пропорциональность между интенсивностью торможения и величиной усилия, прикладываемого к тормозной педали. Световая и звуковая сигнализации предупреждают водителя о выходе из строя приборов (контуров) тормозной системы и понижения давления сжатого воздуха ниже 65 % от номинального (0,7—0,75 МПа). Каждая тормозная система состоит из тормозного привода и тормозных механизмов. Пневматический тормозной привод состоит из общего участка питания контуров сжатым воздухом и пяти независимых контуров. Общий участок питания контуров состоит из компрессора, регулятора давления, предохранителя от замерзания конденсата и конденсационного ресивера. Воздух по воздухопроводу подходит к двух- и трехсекци- онным защитным клапанам, а затем расходится по пяти независимым контурам. Первый контур. Привод тормозных механизмов колес переднего моста включает в себя часть тройного защитного клапана, ресивер объемом 20 л с краном слива конденсата, часть двухстрелочного манометра, нижнюю секцию двухсекционного тормозного крана, клапан ограничения давления, клапан контрольного вывода, тормозные камеры передних колес, трубопроводы от нижней секции двухсекционного тормозного крана к нижней секции клапана управления тормозными механизмами прицепа с двухпроводным приводом и от него к клапану управления тормозными механизмами прицепа с однопроводным приводом, к разобщительным кранам и соединительным головкам. Второй контур. Привод тормозных механизмов колес задней тележки и прицепа включает в себя часть тройного защитного клапана, два ресивера общим объемом 40 л, часть двухстрелочного манометра, верхнюю секцию двухсекционного тормозного крана, автоматический регулятор тормозных сил, четыре тормозных камеры колес задней тележки, клапан контрольного вывода, верхнюю секцию клапана управления тормозными механизмами прицепа с двухпроводным приводом, те же узлы привода прицепа, что
26 28 Рис. 162. Тормозной пневматический привод автомобиля КамАЗ-5320: 7 — тормозные камеры передних колес; 2 — кран управления стояночной и запасной тормозными системами; 3 — кран аварийного растормаживания стояночной тормозной системы; 4 — кран вспомогательной тормозной системы; 5 — двух- стрелочный манометр; 6 — контрольные лампы и звуковой сигнализатор; 7 — клапаны контрольного вывода; 8 — клапан ограничения давления; 9 — компрессор; 10 — пневмоцилиндр привода рычага останова двигателя; 11 — регулятор давления; 12 — предохранитель от замерзания; 13 — двойной защитный клапан; 14 — датчик включения электромагнитного клапана тормозного механизма прицепа; 15 — аккумуляторные батареи; 16 — двухсекционный тормозной кран; /7— тройной защитный клапан; IS — датчик падения давления в ресивере; 19 — краны слива конденсата; 20 — конденсационный ресивер; 21 — клапан отбора воздуха; 22 — ресиверы первого контура; 23 — пневмоцилиндр привода заслонки вспомогательной тормозной системы; 24 и 25 — ресиверы первого и третьего контуров соответственно; 26 — тормозные камеры колес задней тележки; 27 — датчик включения контрольной лампы стояночной тормозной системы; 28 — энергоаккумуляторы; 29 — ускорительный клапан; 30 — автоматический регулятор тормозных сил; 31 — клапан управления тормозными механизмами прицепа с двухпроводным приводом; 32 — двухмагистральный клапан; 33 — датчик включения сигнала торможения; 34 — клапан управления тормозными механизмами прицепа с однопроводным приводом; 35 — одинарный защитный клапан; 36 — задние фонари; 37 — разобщительные краны; 38 к 39 — соединительные головки типа А и типа «Палм» соответственно
254 Раздел /К Системы управления были перечислены в первом контуре, воздухопроводы и шланги между всеми перечисленными элементами. Третий контур. Привод тормозных механизмов стояночной и запасной тормозных систем тягача и прицепа, а также питания комбинированного привода тормозных механизмов прицепа включая часть двойного защитного клапана, два ресивера общим объемом 40 л, клапан контрольного вывода, кран управления стояночной и запасной тормозными системами, ускорительный клапан, часть двухмагистрального перепускного клапана, четыре пружинных энергоаккумулятора, трубопроводы и шланги между вышеназванными узлами; трубопровод от крана стояночной и запасной тормозных систем к средней секции клапана управления тормозными механизмами прицепа с двухпроводным приводом, ресивер к одинарному защитному клапану управления тормозными механизмами с однопровод- ным приводом и разобщительным клапаном, соединительные головки (головка типа А однопроводного привода тормозных механизмов прицепа, головка типа «Палм» двухпроводного привода). Четвертый контур. Привод вспомогательной тормозной системы и питания потребителей сжатого воздуха включает в себя конденсационный ресивер, часть двойного защитного клапана, два цилиндра привода заслонок вспомогательной тормозной системы, один цилиндр выключения подачи топлива ТНВД, трубопроводы и шланги между вышеперечисленными приборами. От этого же контура сжатый воздух поступает к потребителям (стеклоочистители, пневмогидравлический усилитель выключения сцепления и др.). Пятый контур. Привод системы аварийного растормаживания тормозных механизмов стояночной тормозной системы включает в себя часть тройного защитного клапана, кран системы аварийного растормаживания, часть перепускного клапана, воздушные ресиверы, воздухопроводы и шланги между перечисленными приборами. 2.12. Приборы тормозного пневмопривода. Аппараты подготовки и хранения сжатого воздуха В пневматических приводах рабочим телом является воздух, сжатие которого производится компрессором. Компрессор (рис. 163) — двухцилиндровый поршневого типа установлен на переднем торце задней крышки блока картера, имеет шестеренчатый привод. Воздух в компрессор через пластинчатые впускные клапаны поступает из воздухоочистителя, а сжатый воздух вытесняется в пневмосистему через пластинчатые нагнетательные клапаны, расположенные в головке цилиндров компрессора. Регулятор давления сжатого воздуха (рис. 164), поступающего от компрессора. При возрастании давления до 0,75 МПа регулятор сообщает пневмоцилиндры с окружающей средой и подача воздуха прекращается, а при падении давления до 0,65 МПа сжатый воздух вновь поступает в пнев-
Глава 2. Тормозная система 255 Рис. 163. Компрессор пневмосистемы атомобилей марки «КамАЗ»: 1 — коленчатый вал; 2 — гайка крепления зубчатого колеса; 3 — уплотнитель; 4 — зубчатое колесо привода; 5 — мае- лосъемное кольцо; 6 — компрессионное кольцо; 7 — поршень; 8 — головка цилиндров; 9 — штуцер; 10 — крышка мосистему. При давлении в системе менее 0,7 МПа воздух из компрессора поступает в регулятор, проходя через фильтр в кольцевой канал и через обратный клапан в пневмосистему. Часть воздуха одновременно поступает в подпоршневую полость следящего поршня. В случае повышения давления в пневмосистеме, а следовательно, и в полости под следящим поршнем до 0,75 МПа следящий поршень поднимается, преодолевая сопротивление своей пружины. Выпускной клапан закрывается, впускной клапан открывается, и воздух из полости под следящим поршнем поступает в полость над разгрузочным поршнем. При этом разгрузочный поршень перемещается вниз, разгрузочный клапан открывается, и сжатый воздух через вывод выходит в окружающую среду. В случае выхода из строя регулятора давление на выводе от компрессора возрастает, и разгрузочный клапан срабатывает как предохранительный, открываясь при давлении 1 МПа, преодолевая при этом суммарное сопротивление своей пружины и пружины разгрузочного поршня. Предохранитель от замерзания испарительного типа (рис. 165) служит для зашиты трубопроводов и приборов пневмопривода от замерзания конденсата. В стакан заливается 200—1000 см3 этилового спирта. С помощью штока с рукояткой предохранитель может быть подключен к пневмосистеме при температуре ниже 5 °С или отключен при температуре выше 5 °С. Во включенном состоянии рукоятка со штоком находится в верхнем положении, при котором уплотнительное устройство выведено из нижнего гнезда, пружина фитиля растягивает его, и часть его выходит в воздушный канал. Проходящий воздух насыщается парами этилового спирта и образует конденсат с низкой температурой замерзания. При опускании штока фитиль утапливается, а уплотнитель садится в гнездо и разобщает резервуар предохранителя с воздушным каналом. Жиклер выравнивает давление в магистрали и корпусе.
256 Раздел ГУ. Системы управления Рис. 164. Регулятор давления: а — конструкция; 6 — схема работы при давлении в системе менее 700 кПа; в — схема работы при давлении в системе 700—750 кПа; 1 и 8 — выводы в окружающую среду; 2 — разгрузочный клапан; 3 — вывод от компрессора; 4 — фильтр; 5 — пробка канала отбора воздуха; 6 — выпускной клапан; 7 — уравновешивающая пружина; 9 — следящий поршень; 10 — обратный клапан; 11 — вывод в пневмосистему; 12 — впускной клапан; 13 — разгрузочный поршень; 14 — седло разгрузочного клапана; 15 — клапан для накачивания шин; 16 — колпачок; А — полость под следящим поршнем; £ — полость над разгрузочным поршнем; лив — каналы; б — кольцевой канал
Глава 2. Тормозная система 257 Рис. 165. Предохранитель от замерзания: / — пружина фитиля; 2 — стакан; 3 — фитиль; 4 и 9 — уплотнительные кольца; 5 — жиклер; 6 — пробка с уплотнительным кольцом; 7 — крышка; 8 — запирающий штифт; 10 — шток с рукояткой Ресиверы, хранящие запас сжатого воздуха, изготовляются сваркой из листа. Их объем обычно 20—100 л. На автомобиле установлено шесть ресиверов емкостью 20 и 40 л, в которых содержится 180 м3 сжатого воздуха. 2.13. Приборы управления подачей воздуха Двухсекционный тормозной кран (рис. 166) служит для управления механизмами рабочей тормозной системы автомобиля и комбинированным приводом тормозных механизмов прицепа. При торможении усилие от тормозной педали передается через упругий элемент крана на ступенчатый поршень, который, перемещаясь вниз, закрывает выпускное отверстие клапана, отсекая вывод контура тормозных механизмов от окружающей среды. При движении верхнего поршня вниз сжатый воздух поступает в контур рабочих тормозных механизмов колес задней тележки. Действие сжатого воздуха и пружины ступенчатого верхнего поршня снизу уравновешивает силу, приложенную к тормозной педали.
258 Раздел ГУ. Системы управления Рис. 166. Двухсекционный тормозной кран и его работа: а —внешний вид; б — конструкция; в — схема работы крана в расторможенном состоянии; г — схема работы крана при торможении; 7, 4 — выводы к ресиверам; 2 — ускорительный поршень; 3 и 13 — клапаны; 5 м 10 — ступенчатые поршни; 6 — упругий элемент; 7 — шпилька; 8 и 12 — пружины ступенчатых поршней; 9 и 77 — выводы в контур рабочих тормозных механизмов задних и передних колес соответственно задней тележки; 14 — толкатель; 15 — вывод в окружающую среду; а — канал
Глава 2. Тормозная система 259 При повышении давления в выводе в контур задней тележки, сжатый воздух по каналу проходит в полость над ускорительным поршнем и, перемещая его вниз, заставляет перемещаться ступенчатый нижний поршень, который вначале закрывает выпускное отверстие клапана, перекрывая вывод в окружающую среду, а затем открывает этот клапан, обеспечивая поступление сжатого воздуха через вывод в тормозные камеры передних колес. При повышении давления в выводе на передние колеса сжатый воздух, пройдя под ускорительным поршнем и нижнем ступенчатым поршнем, вместе с его пружиной уравновешивает силу, действующую на поршень сверху. Следовательно, в выводе контура передних колес устанавливается давление, соответствующее усилию на рычаге тормозного крана. Таким образом, в обеих секциях крана осуществляется следящее действие в зависимости от усилия водителя, прикладываемого к тормозной педали. При повреждении контура нижней секции работа верхней секции не нарушается. При снижении давления в верхней секции вследствие повреждения его контура усилие от рычага тормозного крана через шпильку будет передаваться непосредственно на толкатель нижнего поршня, т. е. нижняя секция, управляемая механическим воздействием, сохранит свою работоспособность. При прекращении торможения упругий элемент возвращается в исходное положение. Нижний и верхний ступенчатые поршни под действием возвратных пружин поднимаются вверх, при этом перекрываются выводы к контурам привода рабочих тормозных механизмов, отсоединяя их от магистрали. Затем открываются выпускные окна, через которые происходит сообщение с окружающей средой. Ручной тормозной кран управления приводом стояночной и запасной тормозных систем (рис. 167) управляет пневматическими механизмами, работающими при выпуске сжатого воздуха. В расторможенном состоянии направляющий колпачок и шток занимают нижнее положение. Шток опускает вниз выпускной клапан, закрывая его внутреннее отверстие, и отводит его от поршня. Вывод в окружающую среду, осуществляемый через внутреннее отверстие выпускного клапана, в этом случае закрыт, а подпоршневая полость через кольцевую щель между выпускным клапаном и поршнем сообщается с надпоршневой полостью. Сжатый воздух из вывода к ресиверу через отверстие в поршне, в подпоршневую и надпоршне- вую полости поступает через вывод к энергоаккумуляторам через ускорительный клапан; пружины энергоаккумуляторов сжимаются, что соответствует расторможенному состоянию тормозных механизмов колес задней тележки. Для приведения в действие запасной тормозной системы необходимо повернуть рукоятку крана. Вместе с рукояткой направляющий колпачок поворачивается и скользит по винтовой поверхности кулачков, вследствие чего колпачок поднимается и поднимает шток. Нижний торец штока отходит от выпускного клапана, который под действием своей пружины поднимается, прижимается изнутри ко дну поршня и, закрывая его отверстие, разобщает вывод к ресиверу с выводом к энергоаккумуляторам. Так как шток, поднимаясь еще выше, открывает внутреннее отверстие выпускного
260 Раздел IV. Системы управления Рис. 167. Ручной тормозной кран управления стояночной и запасной тормозными системами: а — конструкция; б — схема работы при отсутствии торможения; в — схема работы при торможении; 1 — пружина выпускного клапана; 2 — уравновешивающая пружина; 3 и 5 — пружины штока; 4 — кулачок; 6 — направляющий колпачок; 7 — шток; 8 — фиксатор рукоятки; 9 — седло; 10 — выпускной клапан; 11 — поршень; 12 — вывод к воздушному баллону; 13 — вывод в окружающую среду; 14 — вывод к энергоаккумуляторам; Л и Б — полости клапана, то надпоршневая полость, а следовательно, и вывод к энергоаккумуляторам, сообщается с выводом в окружающую среду. При этом ускорительный клапан соединяет полости пружинных энергоаккумуляторов с окружающей средой, и последние с помощью своих пружин производят торможение задних колес. Для включения стояночной тормозной системы рукоятку поворачивают до отказа и в таком положении ее фиксируют стопорной защелкой. При этом весь воздух через вывод к энергоаккумуляторам выходит в окружающую среду, пружины энергоаккумуляторов срабатывают, полностью затормаживая колеса задней тележки.
Глава 2. Тормозная система 261 При частичном повороте рукоятки крана сжатый воздух из полостей энергоаккумуляторов, из управляющей магистрали ускорительного клапана и вывода к энергоаккумуляторам через вывод выходит в окружающую среду до тех пор, пока усилие от давления в подпоршневой полости не превысит суммарное усилие уравновешивающей пружины и давление на поршень в надпоршневой полости. После этого поршень вместе с выпускным клапаном поднимется вверх до соприкосновения выпускного клапана со штоком, отверстие внутри клапана закроется и выпуск воздуха прекратится. Таким образом, осуществляется следящее действие. При включении тормозного механизма стояночной тормозной системы следящее действие отсутствует вследствие того, что выпускной клапан не сможет переместиться до штока, так как раньше поршень упирался в стакан пружины штока. На рис. 168 показан клапан ограничения давления. Рис. 168. Клапан ограничения давления: 1 — уравновешивающая пружина; 2 — большой поршень; 3 — ступенчатый поршень; 4 — впускной клапан; 5 — стержень клапанов; 6 —выпускной клапан; 7 — вывод в окружающую среду; 8 — вывод к тормозным камерам передних колес; 9 — вывод к тормозному крану Кнопочный тормозной кран (рис. 169) служит для управления вспомогательной тормозной системой. Отдельный кран такой же конструкции служит для управления контуром аварийного растормаживания стояночной тормозной системы. При нажатии на кнопку толкателя впускной клапан открывается, а выпускной канал в толкателе закрывается, и сжатый воздух через вывод к ресиверу и полость поступает к выводу пневмоцилиндров. При отпускании кнопки толкатель под действием своей пружины возвращается в свое исходное положение, впускной клапан закрывается, выпускной канал открывается и воздух из пневмоцилиндров выходит в окружающую среду. Клапан управления тормозными механизмами прицепа. Тормозной привод прицепа может быть двухпроводным или однопроводным.
262 Раздел IV. Системы управления 7 89 10 Рис. 169. Кнопочный пневматический кран и пневмоцилиндры вспомогательной тормозной системы: а — кнопочный кран; б — пневмоцилиндр привода заслонки в выпускном коллекторе; в — пневмоцилиндр привода рычага регулятора топливного насоса; 1 — толкатель; 2 — пружина толкателя; 3 — вывод к пневмоцилиндрам; 4 — впускной клапан; 5 — вывод к воздушному баллону; 6 — вывод в окружающую среду; 7 — корпус цилиндра; 8 — поршень; 9 и 11 — возвратные пружины; 10 — шток; 12 — манжета; а — выпускной канал; А — полость Двухпроводным, привод включает в себя клапан управления тормозными механизмами прицепа (рис. 170) с двухпроводным приводом, защитный одинарный клапан, два разобщительных крана и две соединительные головки типа «Палм». Клапан управления служит для управления тормозными механизмами прицепа при действии одновременно или порознь трех независимых контуров: привода тормозных механизмов рабочей тормозной системы передних колес, привода тормозных механизмов рабочей тормозной системы задней тележки, а также привода тормозных механизмов стояночной и запасной тормозных систем. При работе первых двух контуров в клапан подается сигнал прямого действия (т. е. повышенное давление воздуха), при работе третьего контура подается сигнал обратного действия (т. е. сниженное давление при выпуске воздуха краном управления стояночной и запасной тормозными системами). Во всех случаях клапан управления направляет сжатый воздух из ресивера в тормозные камеры колес прицепа при торможении и выпускает из них воздух в окружающуй среду при расторма- живании. Клапан управления состоит из трех частей. В верхней секции клапана помещаются двухсекционный поршень с пружиной, следящий поршень с пружиной и регулировочным винтом. Нижняя часть поршня образует выпускной клапан. В средней секции находится поршень с пружиной, впускной клапан с разгрузочным отверстием внутри и шток, закрепленный в мембране. В расторможенном состоянии к выводам верхней и нижней секций из двухсекционного тормозного крана воздух не подается. К выводу крана управления тормозным механизмам стояночной тормозной системы подается сжатый воздух, который действует сверху на мембрану. Одновременно
Глава 2. Тормозная система 263 Рис. 170. Клапан управления тормозными механизмами прицепа с двухпроводным приводом: а — конструкция; б — схема работы при отсутствии торможения; в — схема работы при торможении рабочей тормозной системой; г — схема работы при торможении запасной или стояночной тормозными системами; 1 — вывод к нижней секции двухсекционного тормозного крана; 2 —вывод к крану управления стояночной и запасной тормозными системами; 3 и 11 — пружины; 4 — разгрузочное отверстие; 5 — впускной клапан; 6 — вывод к верхней секции двухсекционного тормозного крана; 7 — двухсекционный поршень; 8 — регулировочный винт; 9 — уравновешивающая пружина; 10 — следящий поршень; 12 — выпускной клапан; 13 — вывод в тормозную магистраль прицепа; 14 — поршень; 15 — вывод к воздушному баллону; 16 — мембрана; 77— шток; 18 — вывод в окружающую среду снизу на поршень действует сжатый воздух, поступающий через вывод из ресивера. Вследствие того что площадь мембраны больше площади поршня, мембрана вместе со штоком находится в нижнем положении. Двухсекционный и следящий поршни под действием пружины находятся в верхнем положении. Выпускной клапан отходит от впускного клапана, кото-
264 Раздел IV. Системы управления рый под действием своей пружины остается закрытым. Полость над поршнем, а следовательно, и вывод в тормозную магистраль прицепа и магистраль управления тормозными механизмами прицепа через открывшееся разгрузочное отверстие соединяется с выводом в окружающую среду. В случае торможения рабочей тормозной системой (двумя контурами) сжатый воздух от нижней и верхней секций тормозного крана подводится к их выводам клапана управления. Выпускной клапан прижимается к впускному и, закрывая его внутреннее отверстие, разобщает вывод тормозной магистрали прицепа с окружающей средой, а при дальнейшем движении, преодолевая сопротивление пружины, отрывает впускной клапан от поршня. Сжатый воздух из ресивера поступает через открывшийся впускной клапан в тормозную магистраль и далее в линию управления тормозными механизмами прицепа. Сжатый воздух будет поступать до тех пор, пока не наступит равновесие; в верхней секции — между давлением воздуха на следящий поршень снизу и давлениями воздуха и уравновешивающей пружины на этот поршень сверху; в средней и нижней секциях — между давлением сжатого воздуха на поршень сверху и давлением воздуха, действующим на мембрану, снизу. Таким образом, осуществляется следящее действие. При работе двухсекционного тормозного крана в случае растормажива- ния сжатый воздух из выводов верхней и нижней секций тормозного крана выходит в окружающую среду. Шток с поршнем занимают под действием сжатого воздуха в полости над мембраной нижнее положение. Двухсекционный поршень и следящий поршень под действием конусной пружины и сжатого воздуха занимают верхнее положение. Выпускной клапан отходит от впускного клапана, и вывод в тормозную магистраль прицепа через разгрузочное отверстие сообщается с окружающей средой. Если сжатый воздух подводится отдельно к выводу от нижней секции двухсекционного тормозного крана, то происходит перемещение штока с поршнем вверх. При этом вначале впускной клапан подходит к выпускному и разгрузочное отверстие закрывается. Тормозная магистраль прицепа разобщается с окружающей средой, открывается впускной клапан и сжатый воздух поступает в тормозную магистраль прицепа. При подводе сжатого воздуха от верхней секции тормозного крана двухсекционный и следящий поршни начнут перемещаться вниз, обусловливая аналогичное взаимодействие впускного и выпускного клапанов. В случае торможения с помощью стояночной или запасной тормозных систем автомобиля сжатый воздух из вывода под действием сигнала ручного крана управления стояночной и запасной тормозных систем выходит в окружающую среду. Давление воздуха над мембраной падает, и под действием сжатого воздуха, постоянно поступающего из вывода к ресиверу и действующего на поршень снизу, поршень со штоком поднимается вверх. При этом впускной клапан закрывает разгрузочное отверстие, прижимаясь к выпускному клапану, и вывод к тормозной магистрали прицепа закрывается от окружающей среды. Затем впускной клапан отрывается от поршня, и сжатый воздух через вывод к ресиверу поступает в вывод тормозной магистрали прицепа. Давление в магистрали прицепа увеличивается до тех
Глава 2. Тормозная система 265 пор, пока не наступит равновесие между усилиями, действующими на поршень снизу и сверху. Однопроводный привод включает в себя клапан управления тормозными механизмами прицепа, разобщительный кран и соединительную головку типа А. Клапан управления тормозными механизмами прицепа с однопро- водным приводом обеспечивает одну соединительную магистраль, служащую как для питания линии прицепа воздухом, так и для управления процессом торможения. Соединительная магистраль подходит к воздухораспределителю пневмопривода прицепа, который при повышении давления в соединительной магистрали направляет воздух в ресивер прицепа, а при пониженном давлении подводит сжатый воздух из ресивера прицепа в тормозные камеры колес с интенсивностью, зависящей от падения давления в клапане управления тормозными механизмами прицепа с однопроводным приводом (при палении давления до атмосферного происходит полное торможение). Клапан управления тормозными механизмами прицепа с однопроводным приводом (рис. 171). В расторможенном состоянии к выводу подводится сжатый воздух из ресивера контура стояночной тормозной системы. Под действием верхней пружины шток с мембраной находится в нижнем положении, впускной клапан при этом открыт, выпускной клапан закрыт, сжатый воздух из ресивера через открытый впускной клапан вывода поступает в соединительную магистраль прицепа. Одновременно через каналы сжатый воздух поступает соответственно в надпоршневую и под- поршневую полость ступенчатого поршня, воздействуя на него. Но так как снизу площадь поршня больше, он поднимается в верхнее положение, скользя по штоку. Когда давление в магистрали прицепа достигнет 0,52 МПа, нижний поршень, преодолевая сопротивление нижней пружины, опустится вниз, закрывая впускной клапан. Если давление в магистрали прицепа снизится, то нижний поршень под действием своей пружины поднимется и вновь откроет впускной клапан. Таким образом, в расторможенном состоянии в магистрали прицепа автоматически поддерживается необходимое давление. При торможении автомобиля сжатый воздух из двухсекционного тормозного крана подается сначала к клапану управления тормозными механизмами прицепа с двухпроводным приводом, а от него к выводу рассматриваемого клапана. Сжатый воздух, попадая в полость под мембраной, действует снизу на нее, заставляя ее подниматься вместе со штоком. При этом впускной клапан закрывается, а выпускной клапан открывается, сообщаясь с окружающей средой. Давление в соединительной магистрали падает, воздухораспределитель в приводе прицепа направляет сжатый воздух из ресивера прицепа к его тормозным камерам. Следящее действие осуществляется ступенчатым поршнем. При снижении давления в соединительной магистрали оно падает в полости над поршнем, а в полости под поршнем давление будет сохраняться таким же, как в выводе к ресиверу. Кроме того, поршень воспринимает давление воздуха, находящегося в полости под мембраной. Вследствие разности давлений сверху и снизу ступенчатый поршень начинает перемещаться вниз, и,
266 Раздел IV. Системы управления Рис. 171. Клапан управления тормозными механизмами прицепа с однопроводным приводом: а — конструкция; б — схема работы при отсутствии торможения; в — схема работы при торможении; 1 — нижний поршень; 2 — вывод в соединительную линию; 3 — упорное кольцо; 4 — ступенчатый поршень; 5 — вывод в окружающую среду; 6 и /3 — пружины; 7 — мембрана; 8 — вывод к клапану управления тормозными механизмами прицепа с двухпроводным приводом; 9 — шток; 10 — выпускной клапан; 11 — вывод к воздушному баллону; 12 — впускной клапан; 13 — пружины; 14 — регулировочный винт; a w б — воздушные каналы; Л, Б и В — полости упираясь в упорное кольцо, перемещает вниз шток, который закрывает окно выпускного клапана. При повышении давления в выводе к клапану управления тормозными механизмами прицепа с двухпроводным приводом шток находится в крайнем положении, при котором выпускное окно будет полностью открыто, а впускное закрыто, что приведет к полному торможению прицепа. Ускорительный клапан (рис. 172) служит для более быстрого выпуска и впуска сжатого воздуха из энергоаккумуляторов. В расторможенном состоянии под действием сжатого воздуха, поступающего из крана стояночной тормозной системы в управляющую камеру, поршень опускается вниз, закрывая сначала выпускной клапан, затем открывая впускной клапан. При этом сжатый воздух из ресивера поступает через свой вывод в энерго-
Глава 2. Тормозная система 267 б) в) Рис. 172. Ускорительный клапан: а — конструкция; б — схема работы при отсутствии торможения; в — схема работы при торможении; / — вывод к воздушному баллону; 2 — выпускной клапан; 3 — вывод к ручному крану управления стояночной и запасной тормозными системами; 4 — управляющая камера; 5 — поршень; 6 — впускной клапан; 7 — вывод к цилиндрам энергоаккумуляторов; 8 — пружина; 9 — вывод в окружающую среду аккумуляторы и, преодолевая сопротивление пружин энергоаккумуляторов, обеспечивает растормаживание колес. При включении запасной или стояночной тормозной системы сжатый воздух из управляющей камеры через ручной тормозной кран выпускается в окружающую среду. Поршень перемещается вверх, впускной клапан под действием пружины закрывается, а выпускной клапан при движении поршня вверх открывается и энергоаккумуляторы через выводы сообщаются с окружающей средой. При этом пружины энергоаккумуляторов разжимаются, и происходит затормаживание колес. Двухмагистральный перепускной клапан (рис. 173) служит для управления пружинами энергоаккумуляторов от одного из двух независимых контуров: от ускорительного клапана или от крана системы аварийного рас- тормаживания.
268 Раздел IV. Системы управления а) б) Рис. 173- Клапаны: a — цвухмагистральный; б — контрольного вывода; 1 и 3 — седла; 2 — мембрана; 4 — вывод к цилиндрам энергоаккумуляторов; 5 — вывод к крану системы аварийного растормаживания; 6 — вывод к ускорительному клапану; 7 — штуцер; 8 — корпус; 9 — петля; 10 — колпачок; 11 — толкатель; 12 — клапан; 13 — пружина При растормаживании автомобиля с помощью ручного крана сжатый воздух поступает через вывод к цилиндрам энергоаккумуляторов, отжимает мембрану и прижимает ее к седлу. Сжатый воздух из вывода к ускорительному клапану проходит в цилиндры энергоаккумуляторов. При растормаживании краном системы аварийного растормаживания сжатый воздух поступает в вывод к крану аварийного растормаживания, отжимает мембрану влево, прижимает ее к седлу и сжатый воздух поступает в цилиндры энергоаккумуляторов. Клапан быстрого растормаживания сокращает путь движения сжатого воздуха из цилиндров пружинных энергоаккумуляторов в окружающую среду и, следовательно, сокращает время их срабатывания. Сжатый воздух подводится к клапану. Имеется вывод к пружинным аккумуляторам, и вывод в окружающую среду. Под действием сжатого воздуха мембрана перемещается вниз, закрывает выход воздуха в окружающую среду, а затем, прогибаясь по краям, пропускает воздух через выводы в цилиндры пружинных энергоаккумуляторов. В случае торможения стояночной или запасной тормозными системами воздух из подводящего вывода выпускается в окружающую среду: мембрана, поднявшись вверх, закрывает воздухоподводящий вывод, и воздух из энергоаккумуляторов выходит в окружающую среду. Разобщительный кран (рис. 174) служит для перекрытия пневмолинии, соединяющей автомобиль-тягач с прицепом или полуприцепом. При положении рукоятки крана вдоль его корпуса толкатель давит на шток с мембраной, который, преодолевая сопротивление пружины клапана, опускает клапан. При повороте рукоятки поперек корпуса толкатель приподнимается, под действием возвратной пружины шток отходит от клапана, и он под действием своей пружины закрывается. Соединительные головки. Обычно устанавливаются две головки типа «Палм» в магистрали двухпроводного привода и одна типа А в магистрали однопроводного привода, соединяющуюся с головкой типа Б прицепа.
Глава 2. Тормозная система 269 Головки типа «Палм» (рис. 175) бесклапанные с резиновыми уплотнителями для герметизации стыка, а также с фиксаторами, удерживающими головки в сцепленном состоянии. Головка типа А (рис. 176) имеет обратный клапан, закрытый под действием пружины. При соединении головок типа А и Б под действием штифта головки типа Б обратный клапан открывается. Однотипные головки на тягаче и прицепе, как правило, окрашены в одинаковый цвет. а) б) Рис. 174. Разобщительный кран: a — кран открыт; б — кран закрыт; / — пробка; 2 — корпус; 3 — пружина клапана; 4 — клапан; 5 — возвратная пружина; 6 — шток с мембраной; 7 — крышка; 8 — толкатель; 9 — рукоятка а) 6) Рис. 175. Соединительная головка типа «Палм»: a — конструкция; б — соединение головок тягача и прицепа; 1 ~ корпус; 2 — уплотнение; 3 — крышка; 4 — фиксатор; 5 — головка тягача; 6 — головка прицепа Рис. 176. Соединительная головка типа А и ее соединение с головкой типа Б: a — головка типа А; б — соединение головок типа А и Б; / — корпус; 2 — пружина; 3 — обратный клапан; 4 — седло клапана; 5 — крышка; 6 — кольцевая гайка; 7— штифт; 8 — корпус головки типа Б
270 Раздел IV. Системы управления 2.14. Защитные устройства пневматических приводов Двойной защитный клапан (рис. 177, а) служит для распределения поступающего из компрессора сжатого воздуха по двум контурам и поддержания давления в одном контуре при повреждении другого. Сжатый воздух из компрессора, пройдя регулятор давления и предохранитель от замерзания, поступает в центральную полость и, отжав два плоских клапана, через вывод проходит в контур вспомогательной тормозной системы, и одновременно, через другой вывод, — в контур стояночной и запасной тормозных систем тягача и прицепа. Если в одном из контуров, допустим, соединенным с правым выводом, произошла утечка воздуха, то центральный поршень вместе с правым пластинчатым клапаном под действием давления в левом выводе переместится вправо и прижмется к упорному поршню (клапан при этом остается закрытым). Как только давление в центральной полости будет больше усилия пружины первого упорного поршня, правый пластинчатый клапан отойдет от центрального поршня и избыточный воздух выйдет в негерметичный контур. То же самое произойдет в случае повышенного расхода воздуха в одном из контуров. При повреждении одного из контуров двойной защитный клапан поддерживает в другом контуре давление 0,52-0,54 МПа. Тройной защитный клапан (рис. 177, б) распределяет воздух, поступающий из компрессора, по трем контурам и при повреждении одного из них сохраняет давление в исправных контурах. Сжатый воздух из компрессора поступает в левую и правую полости и при возрастании давления до 0,52 МПа открывает левый и правый клапаны, преодолевая сопротивление своих пружин и прогибая мембраны (левую и правую), поступает через выводы в контуры рабочих тормозных механизмов колес переднего моста и прицепа и колес задней тележки и прицепа. В то же время сжатый воздух открывает левый и правый перепускные клапаны, поступает в центральную полость и при давлении 0,51 МПа, открыв центральный клапан, проходит через вывод в контур системы растор- маживания. При разгерметизации одного из контуров давление в связанной с ним полости защитного клапана уменьшится и под действием пружины клапан соответствующего контура закрывается. Если разгерметизируется линия, идущая от компрессора, то все клапаны закроются под действием своих пружин и в контурах сохранится имеющееся в них давление. Одинарный защитный клапан (рис. 178) служит для сохранения давления в ресивере тягача при аварийном падении давления в магистрали прицепа и предохранения прицепа от самозатормаживания при внезапном снижении давления в ресивере тягача. При давлении 0,55 МПа сжатый воздух, поступающий через входной канал, преодолевая сопротивление возвратной пружины поршня, поднимает мембрану и проходит в выходной канал, оттуда через обратный клапан поступает в питающую магистраль прицепа.
Глава 2. Тормозная система 271 10 а) г) Рис. 177. Защитные клапаны: a — двойной; б, в, г — общий вид, конструкция и работа тройного клапана; / — защитный чехол; 2 — вывод в контур вспомогательной тормозной системы; 3 и 4 — уплотнительные кольца; 5 — упорное кольцо; 6 — вывод в контур стояночной и запасной тормозных систем тягача и прицепа; 7 — упорный поршень; 8 — пружина; 9 и 12 — плоские клапаны; 10 — вывод к компрессору; 11 — центральный поршень; 13 — крышка; 14 — регулировочные шайбы; 15 — пробка с дренажным отверстием; 16 — вывод в контур рабочих тормозных механизмов колес переднего моста и прицепа; 17 — корпус; 18 — колпак; 19, 28 и 32 — клапаны; 20, 26 и 34 — опорные диски; 21, 25 и 35 — пружины; 22 — заглушка; 23 — регулировочный винт; 24, 27 w 33 — мембраны; 29 и 30 — перепускные клапаны; 31 — вывод в контур рабочего тормозного механизма колес задней тележки и прицепа; 36 — вывод в контур системы растормаживания; А, Б и В — полости
272 Раздел IV. Системы управления Рис. 178. Одинарный защитный клапан: / — обратный клапан; 2— выходной канал: 3 — мембрана; 4 — поршень; 5 — пружина; 6 — регулировочный винт; 7 — входной канал При падении давления во входном канале ниже 0,545 МПа возвратная пружина поршня возвращает мембрану на место. Обратный клапан не позволяет сжатому воздуху из питающей магистрали попасть в выходной канал под мембрану. 2.15. Исполнительные механизмы пневматических тормозных приводов Тормозная камера (рис, 179) является основным исполнительным механизмом пневматических тормозных приводов. Мембрана такой камеры закреплена между крышкой и корпусом с помощью хомута. При подаче воздуха через штуцер мембрана прогибается и передает усилие через шток и движение рычажно-кулачковому устройству, связывающему шток камеры с тормозными колодками. Отверстия в корпусе камеры служат для выпуска и впуска воздуха из нее при перемещении мембраны. Тормозная камера привода тормозных механизмов колес задней тележки имеет пружинный энергоаккумулятор. Сама тормозная камера является составной частью контура привода рабочей тормозной системы задней тележки, а энергоаккумулятор входит в контур привода стояночной и запасной тормозных систем. Работа стояночного и запасного тормозных механизмов происходит при обратном действии, т. е. при подаче в энергоаккумулятор сжатого воздуха осуществляется растормаживание, а при выпуске воздуха — затормаживание колес. В расторможенном состоянии сжатый воздух находится в цилиндре энергоаккумулятора. Полости тормозной камеры над диафрагмой и под ней соединены с окружающей средой. При торможении рабочей тормоз-
Глава 2. Тормозная система 273 Рис. 179. Тормозные камеры автомобилей марки «КамАЗ»: а — типа 24; б — типа 20 с энергоаккумулятором; в — схема работы камеры при отсутствии торможения; г — схема работы камеры при торможении рабочим тормозным механизмом; д — схема работы камеры при торможении запасной и стояночной тормозными системами; е — схема работы камеры при механическом растормаживании тормозных механизмов; / — шток; 2 — корпус; 3 — крышка корпуса; 4 — штуцер; 5 — мембрана; 6 и 14 — пружины; 7 — вилка; 8 — диск; 9 — фланец цилиндра; 10 — подпятник; // — цилиндр; 12 — поршень; 13 ~ уплотнитель поршня; 15 — винт; 16 — упорная шайба; 17 — дренажная трубка; 18 — толкатель; 19 — подшипник
274 Раздел IV. Системы управления ной системой сжатый воздух из верхней секции двухсекционного тормозного крана подается в полость камеры над диафрагмой, которая, прогибаясь через шток и вилку, соединенную с мембраной рычагом, приводит в действие тормозной механизм колеса. При растормаживании сжатый воздух через двухсекционный тормозной кран выпускается из полости камеры над мембраной в окружающую среду и под действием возвратной пружины мембрана возвращается в исходное положение. При работе стояночного тормозного механизма сжатый воздух выпускается из полости под поршнем энергоаккумулятора, пружина разжимается и перемещает поршень вниз и, перемещая толкатель, через подпятник, мембрану и шток приводит в действие тормозной механизм. Для расторма- живания стояночного тормозного механизма под поршень пружины подается сжатый воздух из системы, поршень поднимается, сжимая пружину, мембрана и шток тормозной камеры под действием своей возвратной пружины поднимается вверх. При этом воздух из полости над поршнем через дренажную трубку и отверстие в корпусе тормозной камеры выходит в окружающую среду. Для механического растормаживания вывинчивают винт рабочей пружины энергоаккумулятора. При этом поршень перемещается вместе с толкателем, пружина сжимается и шток тормозной камеры под действием возвратной пружины мембраны поднимается — тормозной механизм растормаживается. Пневмоцилиндры вспомогательной тормозной системы. На автомобиле устанавливают три цилиндра: два цилиндра — для управления дроссельными заслонками в выпускных трубопроводах двигателя и один цилиндр — для управления рычагом регулятора топливного насоса высокого давления. Устройство и работа всех цилиндров идентичны. Внутри цилиндра имеется поршень со штоком и возвратные пружины. При подаче сжатого воздуха поршень перемещается, выдвигая шток, который приводит в действие исполнительный механизм. Под действием возвратной пружины поршень возвращается в исходное положение. Регулятор тормозных сил (рис. 180) автоматически изменяет давление воздуха в тормозных камерах колес задней тележки (задних колес автомобиля) в зависимости от нагрузки, действующей на нее в момент торможения. Регулятор устанавливают на раме автомобиля. Его рычаг с помощью тяги через упругий элемент и штангу соединен с балками мостов тележки. Внутри регулятора помещен ступенчатый поршень с укрепленной на нем мембраной. Края мембраны зажаты между верхней и нижней половинами корпуса. Внутри поршня выполнено отверстие, в которое проходит верхний конец толкателя, а также имеется клапан, под действием пружины закрывающий отверстие в поршне. В нижней части к толкателю с помощью нижнего поршня поджимается шаровая пята, на которую передается усилие от рычага привода. По соединительной трубке под нижний поршень подается сжатый воздух, обеспечивающий контакт пяты с толкателем. В верхней части корпуса вставлена неподвижная вставка с наклонными ребрами, нижние кромки которых проходят по границе с мембраной.
Глава 2. Тормозная система 275 б) в) г) Рис. 180. Автоматический регулятор тормозных сил: а — конструкция; б — схема работы при отсутствии торможения (максимальная нагрузка на мосты); в — схема работы при торможении (большая нагрузка на мосты); г ~ схема работы при торможении (минимальная нагрузка на мосты); / — клапан; 2 — ступенчатый поршень; 3 — толкатель; 4 ~ мембрана; 5 — рычаг; 6 — шаровая пята; 7 — вывод к тормозным камерам колес тележки; 8 — поршень; 9 — вывод в окружающую среду; 10 — направляющая толкателя; // — ребра неподвижной вставки; 12 — соединительная трубка; 13 — ребра поршня; 14 — неподвижная вставка; 15 — вывод к двухсекционному тормозному крану Ступенчатый поршень также имеет наклонные ребра. Ребра поршня находятся между ребрами вставки. Если ступенчатый поршень находится в верхнем положении, то его ребра не касаются мембраны. В этом случае средняя часть мембраны опирается на поршень, а остальная часть прилегает к неподвижным ребрам вставки. Когда поршень при работе движется вниз, его ребра могут опускаться ниже неподвижных ребер вставки и, по мере опускания, все больше будут опираться на мембрану. Таким образом, пока поршень находится в верхнем положении, его нижняя, активная площадь ограничивается лишь его торцами, так как мембрана лежит на неподвижных ребрах вставки. При
276 Раздел IV, Системы управления опускании поршня его ребра все больше опираются на4 мембрану и его нижняя, активная площадь захватывает все большую часть мембраны, т. е. увеличивается. При торможении регулятор тормозных сил автоматически поддерживает в тормозных камерах давление, обеспечивающее тормозное усилие, пропорциональное нагрузке на задние мосты. При растормаживании давление в выводе к тормозному крану уменьшается. Ступенчатый поршень под действием противодавления снизу поднимается вверх, при этом клапан садится на седло ступенчатого поршня, разобщая выводы к тормозному крану и тормозным камерам колес задней тележки, а затем при дальнейшем движении поршня вверх клапан отходит от толкателя и воздух из тормозных камер через полый толкатель выходит в окружающую среду. 2.16. Антиблокировочные системы К недостаткам регуляторов тормозных сил следует отнести их неспособность реагировать на изменение величины коэффициента сцепления колеса с дорогой. Антиблокировочные системы (АБС) легковых автомобилей представляют собой системы, оснащенные устройствами управления с обратной связью, которые предотвращают блокировку колес во время торможения и сохраняют управляемость и устойчивость по курсу автомобиля. Основными компонентами АБС являются: • гидромодулятор; • датчики скорости вращения колес; • электронный блок управления. При первоначальном торможении давление в приводе возрастает; величина скольжения колес в пятне контакта с дорогой увеличивается и достигается граница устойчивого и нестабильного диапазона качения колес. Начиная с этого момента, любое дальнейшее увеличение давления в приводе или тормозного момента не вызывает какого-либо дальнейшего повышения величины тормозной силы. В устойчивом диапазоне скольжение колеса является скорее деформационным скольжением, оно имеет возрастающую тенденцию в нестабильном диапазоне. Если в движении одного из колес появляются признаки блокировки, то резко возрастает замедление вращения колеса и его скольжение. Если они превышают критические значения, то блок управления посылает сигналы к соленоидному распределительному клапану для прекращения роста или уменьшения давления в тормозном механизме до прекращения опасности блокировки. Затем давление должно быть восстановлено для предотвращения недоторма- живания колеса. Во время автоматического управления торможением необходимо постоянно определять диапазоны устойчивого и нестабильного качения колес и модулировать тормозное давление, создавая максимальное тормозное усилие.
Глава 2. Тормозная система 277 Антиблокировочные тормозные системы (АБС) грузовых автомобилей. С 1 октября 1991 г. на территории стран — членов Европейского Союза законодательными нормами предписывается установка АБС на новых грузовых автомобилях, предназначенных для перевозок с прицепами, и тягачах седельных автопоездов полной массой более 16 т, а также на прицепах более Юти автобусах более 12 т. Предполагается распространить эти нормы на более легкие автомобили (полной массой более 3,5 т). Системы АБС предотвращают блокировку колес при торможении автомобиля. Автомобиль сохраняет устойчивость по курсу и управляемость даже при экстренном торможении на скользком дорожном покрытии. Путь до полной остановки часто становится короче по сравнению с торможением с заблокированными колесами. АБС предотвращает складывание автопоездов. В отличие от легковых, грузовые автомобили имеют пневматические тормозные системы. Тем не менее функциональная схема цепей управления АБС для легковых автомобилей применима также к грузовым автомобилям. Система АБС, используемая в грузовых автомобилях, состоит из датчиков частоты вращения колес, электронного блока управления и модуляторов давления. Все системы АБС должны оснащаться контрольными лампочками для водителя, которые должны загораться, по крайней мере, через две секунды после включения зажигания. Если лампочка загорается во время управления автомобилем, то это указывает на то, что обнаружена неисправность. Это может означать полное отключение АБС. Даже частичное использование системы АБС (либо на тягаче, либо на прицепе) значительно улучшает торможение по сравнению с полным отсутствием АБС. Двухосные системы АБС главным образом предназначены для оборудования двухосных автобусов, грузовых автомобилей и прицепов. Трехосные транспортные средства также могут оснащаться двухосным АБС, если две оси находятся в непосредственной близости и могут управляться фактически при одном и том же давлении, как это делается в одноосных АБС. 2.17. Компоненты ЛБС Датчики скорости вращения колес. Кольцо для возбуждения импульсов устанавливается на ступице колеса и генерирует импульсы напряжения в датчике скорости вращения колеса, когда оно начинает вращаться. Частота импульсов пропорциональна скорости вращения колеса. Датчик скорости вращения колеса удерживается в его установочном отверстии пружинной муфтой. Во время первой установки на автомобиле он устанавливается напротив кольца импульсов. Зазор в подшипнике колеса и упругие деформации оси автоматически фиксируют правильное положение датчика относительно кольца. В зависимости от диаметра кольца воздушный зазор между ним и датчиком может быть в пределах нескольких миллимет-
278 Раздел IV. Системы управления ров. Если зазор становится чрезмерным, блок управления отключает управление этого колеса. Электронный блок управления (ЭБУ). Входные каскады блока ЭБУ преобразуют сигналы от датчиков скорости вращения колес в сигналы требуемой формы (в форме меандра). Скорость вращения колес вычисляется микропроцессором на основе частоты сигналов. При известной скорости движения и отдельных скоростей вращения колес может быть подсчитано скольжение каждого колеса. Если колесо имеет тенденцию к блокировке, то такое значение вычисляется на основе показателей ускорения и скольжения колеса. Микропроцессор подпитывает посредством выходных каскадов блока ЭБУ соленоиды клапанов модуляции давления, которые управляют давлением в отдельных тормозных цилиндрах колес. Блок ЭБУ содержит обширную программу определения неисправностей в пределах действия всей системы АБС (датчики скорости вращения колес, блок ЭБУ, клапаны модуляции давления, электрическая проводка). При обнаружении отказа с помощью блока ЭБУ отключается неисправная часть системы и вырабатывается код, связанный с подробной регистрацией неисправности. Этот код может быть затем считан в ремонтной мастерской. Модулятор давления. Одноканальные модуляторы давления выполняются как релейными, так и нерелейными. Релейные клапаны устанавливаются на полуприцепах и прицепах. Стандартная тормозная система для прицепа часто содержит релейные клапаны, которые могут быть заменены релейными клапанами АБС. Во всех других типах транспортных средств, т. е. в автобусах, грузовых автомобилях и седельных автопоездах, а также в прицепах и автомобилях специального назначения используются нерелейные клапаны АБС. Оба типа клапанов управляются клапанами типа 3/2 (трехлинейными двухпозиционными). Следовательно, нерелейные клапаны управляют диафрагменными клапанами типа 2/2, которые имеют достаточно большее поперечное сечение. В релейных клапанах пилотные клапаны оказывают влияние на давление в управляющей камере клапана. С помощью блока ЭБУ передается управляющее воздействие на пилотные клапаны с целью достичь требуемых режимов поддержания или уменьшения давления. При выключенных пилотных клапанах создается режим увеличения давления. Когда осуществляется обычное торможение (без вмешательства АБС, т. е. при отсутствии тенденции блокировки колеса), воздух течет через модуляторы давления свободно в обоих направлениях. 2.18. Тормозные системы с замедлителем Вспомогательные тормозные системы. Колесные тормозные механизмы, используемые в легковых и грузовых автомобилях, не предназначены для обеспечения длительного торможения (например, при движении автомобиля на спуске), когда тормозные механизмы могут перегреться, что вызовет уменьшение тормозного эффекта. В экстренных случаях это может
Глава 2. Тормозная система 279 привести к полному отказу тормозной системы. Поэтому автомобили с большой полной массой стали чаще оснащать неизнашивающимися вспомогательными тормозными системами в дополнение к обычным колесным тормозным механизмам. Такая система должна быть независимой от колесных тормозных механизмов, а также должна учитывать ограничения скорости движения. Это уменьшает изнашивание колесных тормозных механизмов, а также повышает комфорт при торможении. Вспомогательная тормозная система (моторный тормоз) автомобиля марки «КамАЗ» работает следующим образом. При нажатии на кнопку пневмокрана сжатый воздух, подведенный к крану, подается в два пневмо- цилиндра, штоки которых связаны с рычагами валов заслонок в выпускных трубопроводах двигателя, и в пневмоиилиндр, шток которого связан с рейкой топливного насоса высокого давления. Двигатель переводится в компрессорный режим работы, так как отключается подача топлива в цилиндры, и одновременно перекрываются выпускные трубопроводы. В результате в системе выпуска отработавших газов образуется противодавление, которое должно преодолеваться каждым поршнем двигателя во время такта выпуска. Моторный тормоз способен создать достаточно большой тормозной момент (при наличии выхлопных заслонок) при включении низших передач. Ввиду своей простоты и дешевизны, несмотря на относительно невысокую эффективность, моторный тормоз применяется гораздо шире других типов (гидравлических и электрических) тормозов замедлителей.
Список литературы 1. Автомобильный справочник, BOSCH / Пер. с англ. Первое русское издание. За рулем, 1999. 2. Вершигора В. А., Игнатов А. П. и др. Автомобиль ВАЗ-2108. ДОСААФ СССР, 1986. 3. Вершигора В. А. и др. Автомобиль ВАЗ-2121 «Нива». М.: Транспорт, 1980. 4. Конструкция автомобиля (двигатель) / Под ред. Карунина А. Л. М.: МГТУ «МАМИ», 2001. 5. Конструкция автомобиля (шасси) / Под ред. Карунина А. Л. М.: МГТУ «МАМИ», 2000. 6. Тур Е. Я. Серебряков К. Б., ЖолобовЛ. А. Устройство автомобиля. М.: Машиностроение, 1990. 7 ШигуровЛ. М.у Ширшов В. П. Автомобили страны Советов. ДОСААФ СССР, 1980.
Содержание Введение 3 Развитие автомобилестроения в России 3 Классификация автотранспортных средств 4 Раздел I. ДВИГАТЕЛЬ 8 Глава 1. Общие сведения 8 1.1. Назначение и классификация двигателей 9 1.2. Устройство и основные параметры двигателя 10 1.3. Рабочие циклы ДВС 12 1.4. Карбюраторный четырехтактный двигатель 13 1.5. Четырехтактный дизель 14 1.6. Сравнение дизелей и карбюраторных двигателей 16 1.7. Число и расположение цилиндров 16 Глава 2. Кривошипно-шатунный механизм 25 2.1. Неподвижные детали 25 2.2. Подвижные детали 28 2.3. Подвеска двигателя 34 Глава 3. Механизм газораспределения 36 3.1. Детали механизма газораспределения 36 3.2. Клапанный механизм 40 3.3. Фазы газораспределения 43 Глава 4. Система охлаждения 43 4.1. Жидкостная система охлаждения 44 4.2. Приборы жидкостной системы охлаждения 46
282 Содержание 4.3. Предпусковой подогреватель 50 4.4. Воздушная система охлаждения 51 Глава 5. Смазочная система 52 5.1. Приборы смазочной системы 57 5.2. Вентиляция картера 60 Глава 6. Система питания карбюраторного двигателя 62 6.1. Горючая смесь 64 6.2. Режимы работы двигателя 65 6.3. Простейший карбюратор 66 6.4. Вспомогательные устройства карбюратора 67 6.5. Устройство карбюраторов 71 6.6. Ограничитель максимальной частоты вращения коленчатого вала двигателя 73 6.7 Управление карбюратором 75 6.8. Приборы системы питания двигателя 75 6.9. Нейтрализация отработавших газов 81 6.10. Электронная система впрыска топлива 82 6.11. Система питания двигателя автомобиля, работающего на альтернативном топливе 84 6.12. Приборы 86 Глава 7. Система питания дизеля 89 7.1. Смесеобразование в дизелях 91 7.2. Период задержки самовоспламенения топлива 91 7.3. Приборы системы питания дизеля 92 7.4. Топливный насос высокого давления 95 7.5. Форсунки 99 7.6. Регулятор частоты вращения коленчатого вала 102 7.7. Система подачи и очистки воздуха 104 7.8. Экологичность автомобильных двигателей 105 Раздел II. ТРАНСМИССИЯ 107 Глава 1. Сцепление 109 1.1. Сцепление с периферийным расположением пружин 109 1.2. Сцепления с диафрагменной пружиной 113 1.3. Пневмогидроусилитель привода сцепления 117
Содержание 283 Глава 2. Коробка передач 118 2.1. Ступенчатые коробки передач 120 2.2. Многоступенчатые коробки передач 123 2.3. Синхронизаторы 125 2.4. Механизм управления коробкой передач 127 2.5. Гидромеханическая коробка передач 128 2.6. Электронные системы управления коробкой передач 130 2.7. Раздаточные коробки 130 2.8. Раздаточная коробка автомобиля ГАЗ-66-11 131 2.9. Раздаточная коробка передач автомобиля ВАЗ-2121 133 2.10. Спидометр 135 Глава 3. Карданная передача 135 3.1. Карданные шарниры неравных угловых скоростей 138 3.2. Шарниры равных угловых скоростей 139 Глава 4. Мосты 141 4.1. Ведущий мост 142 4.2. Комбинированный мост 143 4.3. Главные передачи 145 4.4. Главные одинарные передачи 146 4.5. Главные двойные передачи 147 4.6. Дифференциалы 151 4.7. Полуоси 155 Раздел III. НЕСУЩАЯ КОНСТРУКЦИЯ 157 Глава 1. Несущая конструкция грузового автомобиля 158 1.1. Рама 158 1.2. Тягово-сцепное устройство 159 1.3. Передний управляемый мост 160 1.4. Установка управляемых колес 162 Глава 2. Подвеска 164 2.1. Упругие элементы подвесок 168 2.2. Направляющее устройство 171 2.3. Гасители колебаний 172 2.4. Стабилизатор поперечной устойчивости 176
284 Содержание 2.5. Зависимые подвески 177 2.6. Независимые подвески 179 Глава 3. Колеса и шины 182 3.1. Шина 183 3.2. Обозначение шин 188 3.3. Колеса 189 3.4. Обозначение колес 193 3.5. Балансировка колес 193 3.6. Ступицы колес 194 3.7 Крепление запасного колеса 194 Глава 4. Кузова 196 4.1. Кузова легковых автомобилей 196 4.2. Кузова автобусов 198 4.3. Кузова грузовых автомобилей 200 4.4. Оборудование кабин, кузовов 201 4.5. Система отопления и вентиляции кузова 205 Раздел IV. СИСТЕМЫ УПРАВЛЕНИЯ 207 Глава 1. Рулевое управление 207 1.1. Стабилизация управляемых колес 210 1.2. Рулевые механизмы 211 1.3. Червячные механизмы рулевого управления 212 1.4. Винтовые механизмы рулевого управления 213 1.5. Реечные механизмы рулевого управления 215 1.6. Рулевой привод 216 1.7. Усилители рулевого привода 218 1.8. Насосы гидроусилителей 225 Глава 2. Тормозная система 227 2.1. Назначение и требования к тормозным системам 227 2.2. Структура тормозных систем 228 2.3. Приводы тормозных механизмов 229 2.4. Механический привод тормозных механизмов 229 2.5. Гидравлические приводы тормозных механизмов 230 2.6. Пневматический привод 235
Содержание 285 2.7 Тормозные механизмы 238 2.8. Тормозные механизмы стояночной тормозной системы 243 2.9. Усилители тормозных приводов 245 2.10. Двухконтурные тормозные приводы 249 2.11. Многоконтурные тормозные приводы 251 2.12. Приборы тормозного пневмопривода. Аппараты подготовки и хранения сжатого воздуха 254 2.13. Приборы управления подачей воздуха 257 2.14. Защитные устройства пневматических приводов 270 2.15. Исполнительные механизмы пневматических тормозных приводов 272 2.16. Антиблокировочные системы 276 2.17. Компоненты АБС 277 2.18. Тормозные системы с замедлителем 278 Список литературы 280
Передерни Виктор Павлович Устройство автомобиля Учебное пособие Редактор К В. Скугаревская Корректор Ж. А. Ермолаева Компьютерная верстка И. В. Кондратьевой Оформление серии К. В. Пономарева Сдано в набор 07.08.2004. Подписано в печать 11.11.2004. Формат 70x100/16. Гарнитура «Тайме». Усл. печ. л. 23,22. Уч.-изд. л. 23,5. Печать офсетная. Бумага офсетная Доп. тираж 4000 экз. Заказ № 3794. ЛР № 071629 от 20.04.98 Издательский Дом «ФОРУМ» 101000, Москва — Центр, Колпачный пер. д. 9а Тел./факс: (495) 925-39-27 E-mail: fonini-books@mail.ru ЛР№ 070824 от 21.01.93 Издательский Дом «ИНФРА-М» 127282, Москва, ул. Полярная, д. 31в Тел.: (095) 380-05-40 Факс: (095) 363-92-12 E-mail: books@infra-m.ru Http.www.infra-m.ru По вопросам приобретения книг обращайтесь: Отдел продаж*ИНФРА-М» 127282, Москва, ул. Полярная, д. 31в Тел.: (495) 363-42-60 Факс: (495) 363-92-12 E-mail: books@infra-m.ru Центр комплектования библиотек 119019, Москва, ул. Моховая, д. 16 (кор. К, Российская государственная библиотека) Тел.: (495) 202-93-15 Магазин «Библиосфера» (розничная продажа) 109147, Москва, ул. Марксистская, д. 9 Тел.: (495) 670-52-18, (495) 670-52-19 Отпечатано в ОАО «Тверской ордена Трудового Красного Знамени полиграфкомбинат детской литературы им. 50-летия СССР». 170040, г. Тверь, проспект 50 лет Октября, 46.
ИЗДАТЕЛЬСКИЙ ДОМ «ФОРУМ» Сообщает о выходе в серии «Профессиональное образование» следующих книг: Волкогонова О. Д., Сидорова Н. М. Основы философии. 480 с. Гаврилов К. Л. Профессиональный ремонт двигателей внутреннего сгорания. 288 с. Гальперин М. В. Экологические основы природопользования. 256 с. Кошевая И. П. Канке А. А. Метрология, стандартизация, сертификация. 416 с. Козырев Г И. Основы социологии и политологии. 208 с. Кнышова Е. Н. Менеджмент. 272 с. Кнышова Е. Н., Панфилова Е. Е. Экономика организации. 336 с. Кудина М. В. Финансовый менеджмент. 256 с. Кудина М. В. Основы экономики. 352 с. Океанова 3. К. Основы экономической теории. 272 с. Разин А. 8. Основы этики. 304 с. Сергеева И. И., Тарасова И. В. Информатика. 336 с. Стародубцева Е. Б. Основы банковского дела. 256 с. Стуканов В. А. Автомобильные эксплуатационные материалы. 208 с. Стуканов б. А, Основы теории автомобильных двигателей и автомобиля. 368 с. Стуканов В. А., Леонтьев К. Н. Устройство автомобилей. 496 с. Туревский И. С. Введение в специальность «Техническое обслуживание и ремонт автомобилей». 208 с. Туревский И. С. Техническое обслуживание автомобилей. Часть 1. Техническое обслуживание и текущий ремонт. 368 с. Туревский И. С. Техническое обслуживание автомобилей. Часть 2. Организация хранения, технического обслуживания и ремонта автомобильного транс- порта. 256 с. Туревский И. С. Электрооборудование автомобилей. 368 с. Туревский И. С. Экономика отрасли (автомобильный транспорт). 288 с. Туревский И. С. Дипломное проектирование автотранспортных предприятий. 240 с. Хруничева Г. В. Детали машин: типовые расчеты на прочность. 224 с. Эйгель С. И. Правила дорожного движения. 256 с. По вопросам приобретения литературы и с предложениями по изданиям просим обращаться по адресу: 10100, г. Москва-Центр, Колпачный пер.г 9а. Тел./факс: (495) 625-39-27. e-mail: forum-books@mail.ru
Pli книги Издательского Дома «ФОРУМ» 55 право экономика психология педагогика • техническая литература • информационные и компьютерные технологии УЧЕБНИКИ для вузов, техникумов, колледжей и лицеев ПОСОБИЯ для поступающих в вузы СПРАВОЧНАЯ ЛИТЕРАТУРА Приглашаем к сотрудничеству ПО ВОПРОСАМ ПРИОБРЕТЕНИЯ ЛИТЕРАТУРЫ И С ПРЕДЛОЖЕНИЯМИ ПО ИЗДАНИЯМ ПРОСИМ ОБРАЩАТЬСЯ ПО АДРЕСУ: 101000, Г. МОСКВА-ЦЕНТР, КОЛПАЧНЫЙ ПЕР, 9А. ТЕЛ.:(495)625-39-27, ФАКС:(495)625-39-27, 3-MAIL: FOKUM-BOOKS@MAIL.KU
Виктор Павлович ПЕРЕДЕРНИ Ведущий преподаватель высшей категории Дмитровского политехнического колледжа, председатель цикловой комиссии спецдисциплин специальности 1705 "Техническое обслуживание и ремонт автомобильного транспорта", доцент кафедры "Автомобили" им. академика Е.А. Чудакова Московского государственного технического университета "МАМИ". Имеет ряд научных и методических публикаций. Награжден знаком "Почетный работник среднего профессионального образования России".