Text
                    ДЭН том
НЕИС
В ЭЛЕ
Полезные правила:
• «научного тыка»;
• «если нельзя, но очень хочется, то можно»;
• «не подмажешь - не поедешь» и т.п.;
А также:
• методы поиска неисправностей в бытовой электронике;
• описание всех типов диагностического оборудования;
• обзор новых компонентов и технологий поверхностного монтажа и многое другое.
Dan Tomal Neal Widmer
Electronic Troubleshooting
Third Edition
McGraw-Hill
New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi Sanjuan Seoul Singapore Sydney Toronto
В помощь радиолюбителю
Ден Томел Нил Уидмер
Поиск неисправностей в электронике
Деи Томел Нил Уидмер
Поиск неисправностей в электронике
В помощь радиолюбителю
NT Press Москва,
УДК 621.37
ББК 32.84
Т52
Подписано в печать 15.02.2007. Формат 70x100 V16 • Гарнитура «Баскервиль». Печать офсетная. Усл. печ. л. 33,8. Тираж 3000 экз. Зак. №5336
Томел Д., Уидмер Н.
Т52 Поиск неисправностей в электронике / Д. Томел, Н. Уидмер ; пер. с англ. С. О. Махарадзе. - М.: НТ Пресс, 2007. - 416 с.: ил. (В помощь радиолюбителю)
ISBN 978-5-477-00163-7
В данной книге автор касается теоретических и практических основ диагностики и ремонта электротехнической и электронной аппаратуры. Приведены описания технических средств, предназначенных для этих целей. Исследованы методы поиска неисправностей в промышленном, бытовом, медицинском оборудовании. Рассмотрены типичные неполадки радио-, теле-, микропроцессорных и других систем.
Для инженеров, техников, обслуживающего персонала и радиолюбителей любого уровня.
УДК 621.37
ББК 32.84
Original Edition copyright © by the McGraw-Hill Companies, Inc. All Rights Reserved. Russian edition copyright © 2007 by NT Press. All rights reserved.
Все права защищены. Любая часть этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельца авторских прав.
Материал, изложенный в данной книге, многократно проверен. Но, поскольку вероятность технических ошибок все равно остается, издательство не может гарантировать абсолютную точность и правильность приводимых сведений. В связи с этим издательство не несет ответственности за возможный ущерб любого вида, связанный с применением содержащихся здесь сведений.
Все торговые знаки, упомянутые в настоящем издании, зарегистрированы. Случайное неправильное использование или пропуск торгового знака или названия его законного владельца не должно рассматриваться как нарушение прав собственности.
ISBN 0-07-142307-9 (англ.)
ISBN 978-5-477-00163-7 (рус.)
Copyright © McGraw Hill Companies © Издание, перевод на русский язык, оформление «НТ Пресс». 2007
Предисловие.................................................12
Введение...................................................14
Глава 1. Принципы сервисного обслуживания............................17
Анализ решения проблем............................................. 17
Неисправности схем................................................ 19
Методы поиска неисправностей.......................................22
Тестирование основных элементов....................................26
Полупроводниковые элементы.........................................32
Интегральные микросхемы............................................44
Электронные лампы..................................................48
Конденсаторы сверхбольшой емкости..................................50
Катушки индуктивности..............................................51
Вопросы для самоконтроля...........................................52
Вопросы и проблемы ..............................................56
Глава 2. Контрольно-измерительные приборы для электронных устройств............................................58
Общий обзор........................................................58
Мультиметр, ампервольтомметр, мультиметр на полевых транзисторах, цифровые универсальные измерительные приборы.......................59
Осциллограф........................................................60
Специальное контрольно-измерительное оборудование..................63
Использование тестовых пробников...................................73
Вопросы для самоконтроля...........................................74
Вопросы и проблемы ..............................................75
Глава 3. Сервисное обслуживание двигателей и генераторов.............77
Основные сведения..................................................77
Типы двигателей....................................................79
Двигатели с расщепленными фазами.................................80
Конденсаторные двигатели.........................................81
Нашим отцам:	Раймонду Томелу (Raymond Tomei) и Эдварду Уидмеру (Edward Widmer), двум талантливым специалистам по поиску неисправностей, которые научили нас практической стороне ремонта электроники. Они могли починить все что угодно и вдохнули в нас желание быть похожими на них.
Нашим женам:	Аннете (Annette) и Кристине (Kristine).
Нашим детям:	Джонатану (Jonathan), Стефани (Stephanie) и Джастину (Justin) Джону (John), Бредли (Bradley), Блейку (Blake), Мэтью (Matthew) и Кати (Katie)
Оглавление
7
Двигатели с расщепленными полюсами...................................83
Двигатели репульсионного типа........................................85
Двигатели постоянного тока ..........................................85
Универсальные электродвигатели.......................................87
Многополюсные двигатели..............................................87
Синхронные двигатели.................................................88
Редукторные двигатели................................................88
Шаговый двигатель....................................................89
Специальные двигатели и их применение................................91
Типы генераторов.......................................................91
Ремонт двигателей......................................................92
Ремонт генераторов....................................................104
Профилактическое техническое обслуживание.............................107
Вопросы для самоконтроля..............................................109
Вопросы и проблемы..................................................112
Глава 4. Сервисное обслуживание промышленных устройств управления....................................................113
Основные сведения.....................................................114
Типы устройств управления.............................................116
Устройства защиты от перегрузки.................................... 117
Ручные пускатели....................................................119
Магнитные пускатели.................................................120
Реверсивные магнитные пускатели.....................................122
Контакторы осветительных приборов...................................123
Кнопочные выключатели и пульты .....................................124
Концевые выключатели ...............................................1 24
Барабанные переключатели............................................125
Таймеры.............................................................126
Электронные приводы.................................................127
Программируемые контроллеры.........................................127
Датчики.............................................................128
Ремонт и тестирование.................................................129
Профилактическое техническое обслуживание.............................135
Вопросы для самоконтроля..............................................136
Вопросы и проблемы .................................................140
Глава 5. Сервисное обслуживание электропроводки бытового и промышленного назначения.....................................142
Основные сведения.....................................................142
Ремонт цепей электропроводки..........................................149
Ремонт систем освещения...............................................155
Ремонт распределенных систем телевидения..............................156
Профилактическое техническое обслуживание.............................160
Вопросы для самоконтроля..............................................161
Вопросы и проблемы .................................................164
8
Оглавление
Глава 6. Сервисное обслуживание радио-и телевизионной аппаратуры..............................................165
Основные сведения об амплитудной модуляции............................165
Основные сведения о частотной модуляции...............................167
Основные сведения о частотном разделении каналов......................169
Основные сведения о телевизионных передатчиках и приемниках...........176
Сервисное обслуживание радиоаппаратуры................................180
Магнитофоны.........................................................1 84
Проигрыватели лазерных дисков.......................................1 84
Сервисное обслуживание черно-белого телевизора........................188
Бледное изображение и слабый звук...................................189
Хорошее изображение, слабый звук.......................,............191
Бледное изображение при нормальном звуке............................191
Отсутствие изображения при нормальном звуке.........................191
Звук нормальный, но нет растрового изображения......................1 92
Звук нормальный, но нет синхронизации изображения...................1 94
Звук нормальный, но имеет место сбой строк и уменьшенная ширина изображения.................................................1 95
Звук нормальный, но изображение смещается по вертикали и складывается, высота изображения уменьшена .......................................195
Нормальное изображение, слабый звук.................................1 97
Телевизор не подает признаков жизни.................................1 97
Сервисное обслуживание цветного телевизора............................197
Отсутствие цвета....................................................200
Слабый или тусклый цвет.............................................201
Доминирующий цвет на экране.........................................201
Сигнал выключения канала цветности..................................201
Цветные полосы......................................................201
Другие проблемы цвета...............................................201
Сведение лучей......................................................202
Настройка чистоты цвета.............................................202
Статическое сведение................................................202
Динамическое сведение...............................................202
Техническое обслуживание телевизионных приемников последних моделей.203
Руководства по обслуживанию.........................................207
Компоненты для поверхностного монтажа...............................210
Профилактическое техническое обслуживание.............................210
Вопросы для самоконтроля..............................................211
Вопросы и проблемы .................................................216
Глава 7. Сервисное обслуживание цифровых схем...........................218
Основные сведения.....................................................218
Двоичная система счисления............................................219
Логические функции....................................................219
Оглавление
9
Логика И........................................................  219
Логика ИЛИ........................................................221
Логика НЕ.........................................................222
Схемы И-НЕиИЛИ-НЕ.................................................222
Исключающее ИЛИ...................................................224
Серии цифровых логических приборов...................................225
ТТЛ...............................................................226
КМОП..............................................................231
ЭСЛ...............................................................234
ПЛИС..............................................................234
Корпуса и идентификация ИМС..........................................236
Природа неисправностей...............................................237
Обрыв.............................................................237
Короткое замыкание................................................238
Неисправные периферийные компоненты...............................240
Потенциальные причины неисправностей.................................240
Чтение цифровых схем.................................................242
Поиск и локализация неисправностей...................................243
Методы тестирования и специализированное оборудование................246
Логические пробники...............................................246
Логический импульсный генератор...................................247
Ручное тестовое оборудование......................................248
Осциллографы......................................................249
Логические анализаторы............................................251
Методы поиска неисправностей логических устройств.................252
Ремонт...............................................................256
Извлечение ИМС..................................................  256
Монтаж ИМС........................................................261
Вопросы для самоконтроля.............................................262
Вопросы и проблемы................................................266
Глава 8. Сервисное обслуживание последовательных цифровых схем.........................................................268
Системы счисления....................................................268
Комбинационные логические приборы....................................270
Дешифраторы.......................................................270
Шифраторы.........................................................274
Логические устройства с памятью......................................275
Асинхронные RS-триггеры...........................................276
Синхронные триггеры...............................................277
Счетчики..........................................................279
Регистры сдвига...................................................281
Сервисное обслуживание триггерных схем...............................284
Формы цифровых сигналов..............................................285
10
Оглавление
Пример сервисного обслуживания последовательной цифровой схемы........286
Ремонт сложных электронных цифровых схем..............................294
Профилактическое техническое обслуживание.............................296
Вопросы для самоконтроля..............................................297
Вопросы и проблемы..................................................299
Глава 9. Сервисное обслуживание микропроцессорных систем................301
Принципы работы микрокомпьютеров......................................302
Центральный процессор...............................................302
Память..............................................................302
Устройства ввода/вывода.............................................306
Шины и логические устройства с тремя состояниями....................306
Инструкции и машинный код...........................................308
Машинные циклы и синхронизация......................................309
Персональные компьютеры...............................................311
Аппаратное обеспечение персонального компьютера.....................312
Сервисное обслуживание персональных компьютеров.......................314
Сервисное обслуживание систем с микропроцессорами.....................317
Сервисное обслуживание при разработке.................................322
Профилактическое техническое обслуживание.............................324
Вопросы для самоконтроля..............................................325
Вопросы и проблемы .................................................328
Глава 10. Сервисное обслуживание биомедицинского оборудования..........................................  329
Принципы биомедицины..................................................329
Требования безопасности...............................................330
Сервисное обслуживание диагностического оборудования..................335
Электрокардиографы..................................................337
Электроэнцефалографы................................................343
Электромиографы.....................................................345
Самописцы...........................................................345
Рентгеновские установки.............................................346
Компьютерный томограф...............................................352
Магнитно-резонансные системы........................................353
Ультразвуковое диагностическое оборудование.........................356
Лабораторные инструменты............................................361
Газовый анализатор артериальной крови...............................361
Сервисное обслуживание терапевтического оборудования..................365
Диализ почек........................................................366
Инфузионные насосы..................................................370
Дефибрилляторы......................................................373
Приборы электрохирургии.............................................376
Ультразвуковые терапевтические приборы..............................378
Аппарат для диатермии...............................................382
Оглавление
11
Профилактическое техническое обслуживание........................382
Вопросы для самоконтроля.........................................383
Вопросы и проблемы.............................................387
Приложения
Приложение 1. Руководство по сервисному обслуживанию в двигателях.388
Приложение 2. Руководство по сервисному обслуживанию блоков управления электродвигателями.............................390
Приложение 3. Руководство по сервисному обслуживанию радио- и стереоаппаратуре........................................393
Приложение 4. Руководство по сервисному обслуживанию магнитофонов.394
Приложение 5. Руководство по сервисному обслуживанию в блоках управления электродвигателями...........................395
Приложение 6. Руководство по сервисному обслуживанию телевизоров..396
Приложение 7. Общее руководство по сервисному обслуживанию.......398
Приложение 8. Руководство по сервисному обслуживанию в приемной аппаратуреТВ/ЧМ.......................................399
Приложение 9. Руководство по сервисному обслуживанию микрокомпьютеров.................................................400
Приложение 10. Руководство по сервисному обслуживанию генераторов.402
Приложение 1 1. Руководство по сервисному обслуживанию биомедицинского оборудования.....................................403
Приложение 12. Руководство по тестированию ионисторов............404
Предметный указатель...............................................407
Благодарности
Авторы хотели бы поблагодарить многие организации и людей, которые внесли вклад в создание этой книги. Аннет Томел (Annette Tomal) и Кристин Уидмер (Kristine Widmer) за литературную обработку материала, Али Эмади (Ali Emadi), Кевина Зака (Kevin Zak), Джорджа Хамстра (George Hamstra), Марка Коэна (Mark Cohen), Ричарда Смита (Richard Smith), Кейт Макки (Keith McKee), Майка Бермана (Mike Berman), Эда Слопсема (Ed Slopsema), Джона Киддера (John Kidder), Карен Ванингер (Karen Waninger), Харри Бледсо (Harry Bledsoe) и персонал больницы Св. Елизаветы за их сотрудничество при фотографировании новейшего биомедицинского оборудования и предоставлении самой современной информации. Мы также благодарим Джонатана Томелa (Jonathan Tomal) за его чертежи и Эда Уидмера (Ed Widmer) за технический обзор к главе 6.
Мы хотели бы выразить свою благодарность компаниям, которые предоставили сведения и иллюстрации: Zenith Video Tech Corporation, Winegard Company, KB Electronics Inc., Reliance Electric Company, Lexsco Inc., B&B Motor and Control Corporation, Tektronix Inc., AVO International, Simpson Electric Company, John Fluke Mfg. Co. Inc., Hewlett-Packard Company, Bodine Electric Company, Superior Electric, Allen-Bradley Company, Square D Company, Chapman Electric Works, Etcon Corp., Globe Products Inc., Leader Instruments Corporation, Franklin Electric Company, Marathon Electric Company, Texas Instruments Inc., General Electric Company, IBM Inc., St. Elizabeth Hospital, G.E. Medical Systems, Telex Communications Inc., Howard W. Sams & Co., Electric Power and Power Electronics Center (Illinois Institute of Technology), NetGain Technologies, LLC, Maxwell Technologies, Rich-Mar Corporation.
Предисловие
Область технического обслуживания и поиска неисправностей электронных устройств настолько широка, что ее рассмотрение является очень серьезным вызовом для любого автора. Это работа профессоров Дена Томела (Dan Tomal) и НилаУидмера (Neal Widmer) является ясным, кратким, обстоятельным вариантом ответа на него. Авторы книги прежде всего подчеркивают важность базовых технологий. По мере углубления в материал они рассказывают о деталях процесса, формируя и совершенствуя знания и умения читателя.
Данный учебник будет полезен преподавателям и инструкторам по электронике в самых различных образовательных учреждениях. Примеры демонстрируют практическое использование материала и описаны очень подробно, что делает книгу легкой для чтения и использования в качестве руководства.
Краткий обзор содержания и образцы в тексте убедят даже самого осторожного пользователя, что это именно та книга, которай ему нужна. Помимо того, что издание является прекрасным средством для работы в классе, каждый практикующий специалист оценит его достоинства в качестве надежного справочного пособия.
Ларри Д. Хоффман (Larry D. Hoffman), руководитель департамента электрических технологий университета Пурдю
Введение
15
Рассматриваются такие широко используемые приборы, как ампервольтомметр, мультиметр с большим входным сопротивлением, цифровой мультиметр, осциллограф, а также специализированные тестирующие приборы: мегомметр, цифровой логический пробник, оптический рефлектометр, анализаторы электрических схем, спектра и формы сигнала.
В главе 3 излагается базовая теория работы, а также ремонта электродвигателей и генераторов - сердца современного промышленного оборудования. В числе прочих рассмотрены электродвигатели: с расщепленными полюсами, конденсаторный, трехфазный, репульсионный, универсальный, синхронный и все более популярный шаговый, который используется в системах с цифровым управлением.
В главе 4 объясняются, основные принципы применения и обслуживания промышленных устройств управления. Представлено несколько контроллеров: пускатель с ручным управлением, электромагнитный пускатель с защитным отключением при превышении тока нагрузки, пневматическое реле времени, биметаллическое термореле защиты от превышения тока нагрузки, барабанный переключатель, привод с электронным управлением и программируемый контроллер.
Глава 5 касается поиска неисправностей электропроводки бытового и промышленного назначения. Объясняются основы теории и принципы устройства электропроводки, затем рассматривается поиск неисправностей распределительных щитов, переключателей на три и четыре направления, соединений звездой и треугольником, многофазной проводки промышленного назначения, распределенных систем антенн и телевидения.
Глава 6 охватывает сферу радио и телевидения. Она начинается с теории, описания компонентов схем с амплитудной модуляцией AM, с частотной модуляцией ЧМ, частотной модуляцией с уплотнением и телевидения. Далее описаны основные проблемы, а также методы тестирования и ремонта этих устройств.
Глава 7 вводит читателя в современный мир цифровых схем, охватывая основы цифровой логики, типы корпусов и устройств, методы тестирования цифровых схем. Рассмотрены различные действия с ИС (уход, обращения, снятие, замена), а также характеристики схем с малой степенью интеграции.
В главе 8 рассматриваются последовательные цифровые схемы. Обсуждаются цифровые системы, дешифраторы, шифраторы, триггеры, триггеры-защелки, счетчики, регистры, формы сигналов, сравнительные характеристики параллельной и последовательной передачи данных, различные способы поиска повреждений для схем со средней степенью интеграции и схем на основе триггеров.
Глава 9 предоставляет основополагающие сведения о микрокомпьютерах. Рассматривается центральный процессор (ЦП), память, устройства ввода/вы-вода, шины, машинные языки, синхронизация. Здесь говорится о повреждениях персональных компьютеров, работающих в DOS. Авторы уделили внимание поиску неисправностей микропроцессорных систем.
В главе 10 рассматривается очень интересная область. Принципы, применение и диагностические процедуры для ремонта и калибровки медицинского
Введение
Третье издание было переработано с учетом последних методов поиска неисправностей. Пособие будет полезно многим: от выпускников техникума до студентов старших курсов технических, торговых и промышленных учебных заведений. От техников, работающих в области обслуживания, до любителей и учащихся курсов повышения квалификации.
Книгу могут использовать также инженеры или техники в качестве повседневного руководства при поиске неисправностей широкого спектра электронных и электрических приборов. Читателям желательно иметь базовые знания в этой области.
Уникальным достоинством данного издания является то, что оно объединяет базовую теоретическую и практическую информацию, касающуюся поиска неисправностей самых разных устройств, избавляя от необходимости иметь несколько книг. Авторы весьма детально изложили материал с практических позиций, включив множество таблиц, схем, иллюстраций, графиков и диаграмм для эффективного поиска неполадок. В тексте содержатся многочисленные практические правила и профессиональные хитрости, накопленные авторами за несколько лет работы в качестве специалистов и консультантов, которые помогут вам сэкономить время.
Методика изложения сочетает традиционные принципы обучения с когнитивными, эмоциональными и психомоторными механизмами восприятия, что позволяет облегчить усвоение материала.
В книге речь пойдет об электротехническом оборудовании (двигателях, устройствах управления, электропроводке) и современных технологиях (компьютерах, микропроцессорах). Рассмотрено также новое биомедицинское оборудование. Тематический указатель позволит читателю быстро обратиться к интересующему его вопросу.
Изложение материала ведется от простого к сложному, начиная с объяснения базовых аспектов анализа при поиске неисправностей и обозрения общеизвестных изделий до более сложных и продвинутых технологий.
В 1 главе рассмотрены основные принципы и методы поиска неисправностей электронных и электрических устройств и даны теоретические основы и способы тестирования наиболее часто встречающихся элементов: конденсаторов, резисторов, индуктивностей, диодов, транзисторов, тиристоров и интегральных микросхем. Авторы коснулись также практического подхода к решению проблем. Ими указаны различные типы повреждений, которые обычно встречаются в современных электронных устройствах.
Во 2 главе читатель найдет полезный для практиков обзор современного диагностического оборудования, которое используется при поиске неисправностей современных электронных и электрических устройств и приборов.
16
Введение
диагностического и терапевтического оборудования и приборов: рентгеновских аппаратов, сканеров, средств наблюдения в области сердечно-сосудистой и неврологической медицины. Эта глава также затрагивает вопросы карьеры техника медицинского оборудования в больнице.
Авторы верят, что эта книга будет для вас полезной и познавательной, а также углубит знания и умения ваших студентов в интересной и очень важной области.
Принципы сервисного обслуживания
Карьера в сфере сервисного обслуживания электрических и электронных устройств может быть финансово привлекательной и приносить подлинное удовлетворение от работы. Эксперт обладает уникальным набором знаний в области электронной теории, техники решения проблем и квалификации в выполнении работ. Большинство электронных изделий и приборов содержат такие сходные элементы, как резисторы, конденсаторы, диоды, транзисторы, выводы, разъемы, провода. Понимание причин стандартных поломок этих элементов и способов их тестирования является необходимой предпосылкой Для специалиста. В этой главе вы научитесь основам анализа решения проблем, узнаете распространенные неполадки и основные процедуры проверки работоспособности наиболее часто встречающихся электрических и электронных компонентов.
Анализ решения проблем
Прежде чем пытаться обслуживать прибор, вы должны сначала разработать концепцию решения проблем и применить ее к поиску неисправностей и ремонту. Первоначальный план действий таков:
1.	Анализ ситуации.
2.	Определение причин возникновения проблемы.
3.	Принятие решения.
Вы должны поступать именно в таком логическом порядке, в противном случае могут возникнуть ошибки, несчастные случаи, потери времени и лишние расходы. Например, многие специалисты по ремонту, обнаружив сгоревший
18
ГЛАВА 1. Принципы сервисного обслуживания
предохранитель, просто заменяют его, вместо того, чтобы сначала определить причину возникновения проблемы. В результате может сгореть и следующий предохранитель.
Поэтому первым шагом в обслуживании устройства является анализ ситуации. Он предполагает критический обзор и всестороннее исследование возникшей проблемы, что позволяет специалисту понять причины, которые не позволяют прибору правильно работать. Это определяется простым осмотром общего состояния устройства.
Начните этот этап, задав вопросы заказчику и проведя наблюдения по следующим пунктам:
1.	Обсудите дефект с владельцем или пользователем.
2.	Сравните проблему с другими из вашего прошлого опыта.
3.	Может быть, неисправности и нет, а имеет место ошибка пользователя.
4.	Определите различия между текущим состоянием устройства и тем, которое должно быть при правильной работе.
5.	Оцените ситуацию в целом, отметив симптомы и необходимые изменения.
Определение причин возникновения проблемы вступает в силу, когда наблюдается отклонение от стандартного или желаемого состояния устройства. Примером является неправильно функционирующее или неработающее устройство. Поиск неисправностей представляет собой процесс определения причин проблемы. Первым шагом является организация работы. Начните с подготовки соответствующих схем, спецификаций производителя и руководств по техническому обслуживанию, инструментов и оборудования. Не старайтесь сократить этот этап, бросаясь сразу работать и тратя много времени на исправление устройства, в то время как простое чтение руководства по техническому обслуживанию может способствовать скорейшему решению проблемы. Другими словами, кто провалил этап планирования, тот гарантировал провал на пути устранения неполадок. Когда вы подготовились, выполните следующие операции:
1.	Опишите проблему.
2.	Сравните ситуацию с условиями работы устройства до возникновения неисправности.
3.	Опишите такие различия, как симптомы, шумы, запахи, которые были замечены при возникновении дефекта.
4.	Сравните: что есть и чего нет. Какие компоненты в порядке, а какие нет, и до какой степени они дефектны.
5.	Проанализируйте разницу с помощью тестирования, обращая особое внимание на неочевидные и непрямые связи. Например, небольшие изменения допусков элементов или цвета могут указывать на причину неисправности.
Когда вы определили истинную причину возникновения проблемы, то готовы перейти к заключительной фазе, которая называется «принятие решений».
Неисправности схем
19
На этом этапе специалист рассматривает различные варианты решения проблемы и выбор наилучшего. Например, если выяснено, что причиной неполадок стал электродвигатель, может быть несколько способов исправления. В зависимости от условий работы всей системы в целом можно починить двигатель или поставить новый той же модели. Третий вариант: выбрать более современную версию двигателя. Принимая решение, вы должны обратить внимание на преимущества и недостатки каждого способа. Планирование действий при аварийной ситуации учитывает будущие изменения всей системы: ожидаемый срок службы, условия работы и внесенные изменения. Например, может быть не совсем разумно ставить новый двигатель, если вся система в скором времени морально устареет и, в любом случае, будет заменена.
Помните о необходимости всегда выполнять все три фазы: ситуационный анализ, определение причин возникновения проблемы (поиск неисправностей) и принятие решения (ремонт). Для того чтобы стать умелым экспертом необходимо понимать важность этой последовательности и не изменять ей.
Неисправности схем
Большинство людей хотели бы, чтобы электрические и электронные изделия были гарантированно предохранены от неисправностей, но, к несчастью, это невозможно. Вероятно, большинство поломок - прямо или косвенно - возникают в результате неправильного использования или неудовлетворительного технического обслуживание.
Электрические или электронные неисправности можно классифицировать по основным причинам их возникновения следующим образом:
♦	тепло;
♦	влага;
♦	грязь и загрязнения;
♦	ненормальное или излишнее перемещение;
♦	неправильная установка;
♦	производственные дефекты;
♦	животные и грызуны.
Когда электронные приборы подвергаются слишком сильному тепловому воздействию, возникают проблемы. Тепло увеличивает сопротивление некоторых элементов схем, что в свою очередь приводит к возрастанию тока. Высокая температура заставляет материалы расширяться, высыхать, трескаться, вздуваться и изнашиваться гораздо быстрее, и, рано или поздно, устройство выйдет из строя.
Влага вызывает больший тОк в цепях и может привести к поломке элементов. Вода и другие жидкости вызывает расширение, деформацию, ускоренный износ материалов и аномальный ток (короткие замыкания).
Грязь, дым, испарения, абразивные материалы, сажа, жир, масла приводят к тому, что электронные устройства засоряются и покрываются липким налетом, начинают работать в ненормальном режиме и затем выходят из строя.
20
ГЛАВА 1. Принципы сервисного обслуживания
Чрезмерные и не соответствующие рекомендованным условиям эксплуатации перемещения устройства и вибрации могут вызвать его поломку.
Неправильная установка часто является результатом работы неквалифицированного или невнимательного специалиста. Недостаточно затянутый винт или неправильное паяное соединение могут вызвать преждевременный выход прибора из строя. Производственные дефекты также очень распространены. Например, уже после доставки и установки оборудования нередко обнаруживается незакрепленная монтажная плата. Отгрузка и транспортировка могут нарушить крепление или вызвать повреждение компонентов устройства.
Животные и грызуны могут явиться причиной электрических и электронных неисправностей. Например, крыса может разгрызть провод или пробраться внутрь двигателя.
Очень важно, чтобы каждый специалист по поиску неисправностей понимал четыре основные причины поломок схем:
♦	короткое замыкание;
♦	обрыв в цепи;
♦	замыкание на землю;
♦	механический дефект.
В основном короткое замыкание возникает тогда, когда ток находит прямой путь. Например, короткое замыкание электродвигателя вызывается дефектом двигателя, при котором два провода схемы замыкаются и создают для тока путь обхода нормальной цепи.
Короткое замыкание, вызванное уменьшением сопротивления цепи, приводит к возрастанию тока. Типичные признаки короткого замыкания следующие:
♦	сгоревшие предохранители;
♦	нагрев;
♦	низкое напряжение;
♦	большой ток;
♦	дым.
Обрыв цепи размыкает электрический контур схемы. Например, разомкнутая цепь, содержащая электродвигатель, может иметь обрыв в обмотке, не позволяющий току совершить замкнутый путь в общей цепи. Цепь теоретически будет иметь бесконечное (неограниченное) сопротивление и нулевой ток, поскольку путь заряженных частиц разорван. Типичными признаками этого являются:
♦	бесконечное сопротивление;
♦	нулевой ток;
♦	неработающее устройство.
Замыкание на землю возникает, когда неправильное размещение или изолирование компонента заставляет ток течь по непредусмотренному пути и приводит к тому, что образуется контакт части обмоток с металлическим корпусом двигателя. Данное явление теоретически аналогично короткому замыканию, но
Неисправности схем
21
имеет другие характеристики. В общем, короткое замыкание приводит к остановке работы устройства и выключает автоматический прерыватель по причине непосредственного образования обходного пути для тока. При замыкании на землю устройство часто сохраняет работоспособность вследствие непрямого обходного пути для тока, который может явиться недостаточным для срабатывания защитного выключателя. Схема с замыканием на землю может быть наиболее опасной: поскольку устройство часто продолжает работать, оператор может подвергнуться элекч рическому удару, особенно в случае, если не установлены устройства защитного отключения.
Замыкание на землю происходит при недостаточной изоляции, проблемах в проводах или неправильно размещенных компонентах устройств. Поражение током от двигателя возникает вследствие того, что его корпус и оператор становятся частью электрической цепи. Типичные признаки замыкания на землю следующие:
♦	аномальный ток;
♦	аномальное напряжение;
♦	аномальное сопротивление;
♦	поражение током;
♦	аномальная работа схемы;
♦	срабатывают устройства защитного отключения;
♦	периодически выгорают плавкие предохранители и прерыватели.
Механические проблемы возникают в результате избыточного трения, износа, неправильного использования, вибрации и т.д., при которых физическая часть электротехнического или электронного устройства вызывает неисправность. Разорванные ремни, изношенные подшипники и контакты, ослабленные болты, поврежденные шасси, сломанные средства управления являются типичными примерами механических проблем. Наиболее очевидные признаки возникновения механических дефектов следующие:
♦	шум при работе;
♦	аномальная работа;
♦	визуальные признаки;
♦	неисправности электрической схемы.
Наиболее важный инструмент, который может использовать специалист, -это его собственные органы чувств. Большинство проблем можно выявить с помощью зрения, слуха, обоняния, осязания.
Прежде чем применять сложные технические средства для анализа проблемы, сначала рассмотрите очевидные варианты. Сломанная печатная плата, разорванный провод, сгоревший или обугленный элемент, любой тип повреждения может привести специалиста к источнику проблемы.
Для специалиста нет более знакомого ощущения, чем запах сгоревшего транзистора. Мастер должен с легкостью узнавать его. Поврежденная огнем изоляция, кабель, провода и элементы - ключ к обнаружению неполадок схемы, который поможет локализовать их основную причину.
22
ГЛАВА 1. Принципы сервисного обслуживания
Многие специалисты полагаются на осязание при определении вышедшего из строя компонента. Горячая интегральная микросхема в ряду себе подобных показывает, что в ней, вероятно, произошло короткое замыкание. Аналогично, дымящийся двигатель является обычным признаком разрыва электрической цепи.
С другой стороны, линейный резистор 10 Вт должен быть теплым или горячим. Если это не так, значит в этом элементе произошел обрыв цепи. Из собственного опыта специалисты по поиску неисправностей узнают, что разные компоненты имеют разную температуру при работе, соответствующую области их применения. Когда вы научитесь узнавать эти различия, нахождение вышедших из строя компонентов устройств станет для вас значительно проще.
Методы поиска неисправностей
Существуют основные приемы, которыми пользуются все сервисные инженеры при обслуживании электрических или электронных устройств. Какую именно технику взять на вооружение, зависит от типа дефекта или возникающих симптомов.
В книге представлены следующие методы, которые будут далее разобраны и объяснены:
♦	измерения напряжения;
♦	измерения тока;
♦	измерения сопротивления;
♦	замена;
♦	шунтирование;
♦	нагрев;
♦	охлаждение;
♦	подача сигналов и контроль их прохождения;
♦	тестеры компонентов, тестовые индикаторы;
♦	повторная пайка, настройка и т.д.;
♦	обходные цепи.
Измерения напряжения в схеме обычно производятся с помощью вольтметра или осциллографа. Нулевое напряжение может показывать обрыв цепи, а низкое напряжение может указать на короткозамкнутый компонент. Помните, что
SW1
П Нагрузка (у)
Рис. 1.1. Всегда подключайте вольтметр параллельно цепи
Методы поиска неисправностей
23
всегда следует подключать вольтметр параллельно цепи, в которой вы измеряете напряжение (рис. 1.1).
Измерение тока в схеме обычно осуществляется с помощью амперметра или токоизмерительных клещей. Амперметр указывает и локализует обычные дефекты схем, например короткие замыкания, обрывы в цепях, замыкания на землю. Помните, что амперметр должен подключаться последовательно с цепью, в которой вы измеряете ток (рис. 1.2).
SW1	+
-------ег“*------------------------
-|- Батарея
Нагрузка П
Рис. 1.2. Всегда подключайте амперметр последовательно
Омметр используется для измерения целостности цепи, сопротивления цепи или сопротивления компонента. Эти измерения применяют при локализации коротких замыканий, замыканий на землю и обрыва цепей. Помните, что вы должны выключить питание, прежде чем проводить эту процедуру (рис. 1.3).
SW OFF
Нагрузка
Омметр
Рис. 1.3. Всегда выключайте питание схемы перед измерением сопротивления
Метод замены предлагает вам просто избавиться от элемента, который, по вашим предположениям, вышел из строя, и заменить его заведомо исправным. Этот метод может сэкономить драгоценное время специалиста и избавить его от разочарования. Однако есть определенный риск. Если плата заменяется новой, а проблема остается неразрешенной, новая деталь также может быть повреждена. Кроме того, многие поставщики запасных частей не принимают новые детали к возврату, если те уже использовались, поскольку их качество сомнительно. Тем не менее, если не злоупотреблять этим методом, то он остается важным и ценным.
Когда специалист по поиску неисправностей подозревает, что элемент (обычно конденсатор) вышел из строя, он помещает хороший элемент в схему
24
ГЛАВА 1. Принципы сервисного обслуживания
параллельно подозрительному. Если схема начинает работать, значит, проблема локализована. Это называется шунтирование. Специалист может сэкономить драгоценное время таким способом (рис. 1.4). Помните, однако, что использование этой техники обычно ограничено элементами, где произошел обрыв, а не короткое замыкание. Шунтирование замкнутого элемента может не иметь результата или привести к повреждению нового элемента.
Рис. 1.4. Шунтирование исправным элементом предположительно вышедшего из строя
Нагрев элемента подозреваемого в нестабильной работе, также является одним из способов поиска неисправностей. При воздействии тепла он выходит из строя. Специалист, обычно с помощью фена или жала паяльника, может определить качество элемента. Не перегрейте его и старайтесь не повредить также расположенные рядом компоненты, особенно в пластмассовом корпусе.
Метод охлаждения используется для временного восстановления нормальной работы элемента и предполагает наличие холодного воздух от вентилятора или химического охладителя. Если понизить температуру подозрительного термонестабильного элемента, то часто можно временно восстановить его работоспособность. Применение и тепла, и холода очень полезно для определения микротрещин плат и микроразрывов соединений. Тепло и холод вызывают расширение и сжатие, что может временно дать возможность схеме работать, позволяя специалисту локализовать неисправность.
Подача сигнала и контроль его прохождения наиболее часто используется при работе с радиоприемниками. Технический специалист подает сигнал в приемник, чтобы локализовать неработающий узел (рис. 1.5). Сигнал подается в различные точки, предшествующие каждому каскаду. Если каскад работает, то в динамике слышен звук. Дефектный каскад не пропустит или исказит сигнал и в динамике не будет слышен звук, или звук будет содержать искажения.
Тестеры элементов представляют собой инструменты, которые используются для проверки качества компонентов схемы. К их числу относятся: мегомметры, приборы для проверки конденсаторов, тестовые лампы, тестеры диодов
Методы поиска неисправностей
25
Антенна
Рис. 1.5. Использование метода подачи сигнала в неправильно работающей схеме
и транзисторов, приборы для проверки электронно-лучевых трубок, тестеры интегральных микросхем и др.
Повторная пайка, настройка, выравнивание - все это методы, которые специалист применяет к подозрительным компонентам. Во многих случаях он использует их, следуя интуиции, или предыдущий опыт подсказывает ему, что проблема кроется именно здесь. Если в прошлом подобные устройства часто выходили из строя из-за плохих паяных соединений, которые называются холодной пайкой, быстрое касание паяльником может решить проблему.
Обходные цепи - это способ, требующий отключения одной или нескольких цепей, который может использоваться для локализации предполагаемой неполадки. Например, при запирании транзистора можно отследить его воздействие на работу схемы в целом. В других случаях вся плата может быть отключена для того чтобы проверить напряжение или провести другие измерения, а также наблюдать изменения системы в целом. Например, плата с замыканием может отрицательно воздействовать и на другие цепи. За счет обхода замкнутой платы можно попытаться восстановить нормальную работу устройства, тем самым локализовав проблему.
При диагностике электрических и электронных неисправностей очень важно, чтобы специалист следовал логической систематической процедуре для предотвращения ненужных затрат времени, тестов, замены частей. Время - деньги, и хороший специалист нуждается в хорошей «поваренной книге», где изложен подход к поиску неисправностей. Например, большинство процедур можно значительно облегчить при использовании диаграмм, схем, чертежей.
Принципиальные схемы содержат план размещения и соединения электрических или электронных цепей. На этих диаграммах приводятся номиналы элементов и конкретная информация о них. Диаграммы также указывают рабочее напряжение и ток, формы сигналов и др.
Основные схемы и чертежи показывают размещение проводки или кабелей и органов управления. Чертежи обычно используются при организации бытовых
26
ГЛАВА 1. Принципы сервисного обслуживания
и промышленных электрических сетей и органов управления, чтобы помочь при установке, локализации и прослеживании цепей.
Эскизные схемы могут быть полезны при рассмотрении плана размещения специфических деталей. Во многих случаях схема сопровождается эскизами. В таком случае она показывает только «картинку» схемы.
Успех при поиске неисправностей устройства часто зависит от наличия сервисных чертежей. С некоторыми малораспространенными изделиями иностранного производства и оборудованием трудно работать, поскольку отсутствует справочная литература. Часто специалист считает обслуживание этих изделий пустой тратой времени и бесполезным занятием и предпочитает не связываться с ними.
Независимо от проблемы или ситуации, хороший мастер, прежде всего, составит письменный или воображаемый отчет о проблеме, которую он устранил, и использует эту информацию в будущем.
Тестирование основных элементов
Некоторые элементы используются в большинстве электротехнических и электронных устройств. Для мастера по ремонту очень важно знать, как тестировать наиболее часто встречающиеся элементы.
Резисторы выпускаются разной формы, размера и номинала. Основная задача резистора заключается в ограничении тока и/или уменьшении напряжения. Большинство структурных элементов электрической цепи подобного типа изготавливаются из углерода или проволоки с заданной величиной сопротивления. Например, резистор 1000 Ом с допуском 10% помечается коричневым, черным, красным или серебряным цветом. Поэтому омметр должен показывать величину сопротивления 900-1100 Ом. Резистор, в котором произошел обрыв, имеет бесконечное сопротивление, а неисправный элемент может иметь любое значение, меньше 900 Ом и больше 1100 Ом.
Данный структурный элемент рассчитан на определенную мощность, которая определяет способность резистора поглощать образующееся тепло. Мощность резистора задает его реальный физический размер.
Наиболее часто встречающиеся дефекты резисторов имеют физическое происхождение - они трескаются или обугливаются. Когда чрезмерный ток или рассеиваемая мощность приводят к чрезмерному повышению температуры, в резисторе происходит обрыв. Обугленный или потерявший цвет резистор следует заменить. Он может показывать нормальное сопротивление при измерениях омметром, но при подаче напряжения во время работы схемы возникает обрыв.
Омметр является одним из наиболее важных элементов, используемых при диагностике компонентов устройств. Этот прибор используется для измерения целостности и сопротивления резисторов и других составляющих схемы. Компонент, целостность цепи в котором не нарушена, имеет сопротивление близкое к 0. С другой стороны, компонент, в котором возник обрыв, имеет бесконечное сопротивление.
Тестирование основных элементов
27
При тестировании основных элементов специалист, в основном, занимается измерением сопротивления и проверкой отсутствия обрыва. Например, когда происходит проверка плавкого предохранителя, годный предохранитель будет иметь сопротивление 0 Ом, а разорванный (сгоревший) будет иметь бесконечное сопротивление (рис. 1.6).
Обрыв цепи
Рис. 1.6. Проверка плавкого предохранителя на отсутствие обрывов
Как и в случае с предохранителем, при проверке кабелей, проводов или жгута электропроводки, исправный провод будет обладать целостностью, а разорванный нет. Когда вы проверяете провод на наличие возможного дефекта, подключите омметр и аккуратно согните провод в нескольких местах, особенно там, где наиболее часто возникают неисправности, например около точек подключения. Поскольку провода часто имеют скрытые дефекты, неисправность может проявиться, когда вы их сгибаете.
При проверке переключателей используется такая же процедура. Однополюсный переключатель должен обеспечивать прохождение тока только в одном положении (рис. 1.7). Когда вы проверяете переключатель с помощью омметра, аккуратно пошевелите переключатель для выявления потенциально скрытых дефектов. Эта процедура позволит вам также оценить механическое качество переключателя. Переключатели, как правило, срабатывают четко и надежно, их
Переключатель разомкнут
Неисправность - элемент пропускает ток
Переключатель замкнут
Исправность элемента подтверждена - 0 Ом
Рис. 1.7. Проверка переключателя на целостность с использованием омметра
28
ГЛАВА 1. Принципы сервисного обслуживания
компоненты не должны болтаться и иметь плохие контакты. Некоторые дефектные переключатели можно легко исправить, затянув винт или прочистив. Однако в большинстве случаев их надо заменять.
Характеристики переменных резисторов (или потенциометров), можно измерять и проверять двумя простыми способами. Один из них заключается в использовании омметра для измерения сопротивления потенциометра между крайними выводами. Величина противодействия цепи электрическому току должна быть равна той, которая указана на самом потенциометре. Подключите один щуп омметра к центральному выводу потенциометра, соединенному с подвижным скользящим контактом (движком). При вращении вала потенциометра сопротивление должно изменяться соответствующим образом (рис. 1.8). Другой способ проверки потенциометра заключается в том, чтобы поворачивать вал потенциометра, находящийся в схеме. Если в динамике слышится резкий скрежещущий звук - потенциометр нуждается в чистке или замене. Для этого выключите питание и нанесите средство для очистки элементов на скользящий контакт, одновременно вращая вал.
Рис. 1.8. Проверка потенциометра с использованием омметра
Очень важно иметь неразряженную аккумуляторную батарею, а проверить это можно с помощью измерения напряжения и тока. Хороший источник питания должен давать величину, немного превышающую указанное на нем значение. Например, новая сухая батарея 1,5 В постоянного тока, должна при измерениях давать 1,5—1,б В. В то же время «севшая» батарея будет давать меньше 1,5 В. Полностью заряженная автомобильная аккумуляторная батарея (свинцово-кислотный аккумулятор) с номинальным значением напряжения 12 В обычно имеет напряжение 13,5-14 В.
Тестирование основных элементов
29
Следить за состоянием источников питания необходимо для обеспечения достаточного для измерений тока. При необходимости батарею следует зарядить или заменить.
Динамики являются обычными деталями, которые используются во многих устройствах, например компьютерах, телевизорах, стереоприемниках. Во время проверки этого компонента сначала проведите внешний осмотр. Треск и сильная вибрация часто являются признаками дефекта. Проинспектируйте динамик на наличие трещин, грязи, обрыва гибких проводников, соединяющих его выводы со звуковой катушкой, и др. Если у вас есть сомнения относительно качества выходного устройства, лучше его заменить. Многие динамики работают периодически при нажатии на диффузор. Это верный признак того, что дефект заключается в звуковой катушке, соединениях и т.п.
Когда вы заменяете динамик, важно найти его аналог с таким же импедансом и номиналом мощности, а также с тем же частотным диапазоном - низко-, средне-или высокочастотным. Эти параметры определяются, прежде всего, звуковой катушкой. Номинальная мощность, которая измеряется в ваттах, указывает максимальную мощность, при которой должен работать динамик. Импеданс (в омах) используется для обеспечения электрического согласования входа динамика и выхода приемника. Импеданс динамика можно приближенно определить, измерив сопротивление катушки омметром, и умножив эту величину на 1,25. Часто встречающиеся величины для динамика: 3,2 Ом, 4 Ом, 8 Ом, 10 Ом, 16 Ом и 20 Ом.
Другой метод проверки динамика заключается в подключении омметра к выводам звуковой катушки. В момент подсоединения тестера вы должны услышать щелчок и увидеть небольшое перемещение диффузора. У неисправного динамика эти проявления отсутствуют. Этот метод также может быть полезен для совместного фазирования двух и более динамиков. Подключите омметр к выводам звуковой катушки и проверьте, движется ли диффузор внутрь или наружу. Измените полярность омметра, чтобы изменить направление движения диффузора. Отметьте полярность выводов каждого динамика, соответствующую движению диффузора наружу (рис. 1.9). Затем подключите динамики к звуковому усилителю
Рис. 1.9. Синхронизация динамиков с помощью омметра
30
ГЛАВА 1. Принципы сервисного обслуживания
с соблюдением правильной полярности. Воспроизведение звука должно улучшиться, поскольку диффузоры динамиков будут двигаться внутрь и наружу син-фазно. Если они разбалансированы или работают в противоположных фазах, то звуковые волны определенных частот будут ослабляться.
Конденсаторы используются в сотнях различных случаях: для фильтрации, регулировки напряжения, шунтирования, коррекции фазы, контроля частоты. Прибор различных размеров, форм, типов, номиналов, по сути, конденсатор является элементом, который обладает способностью накапливать электрический заряд. Он состоит из двух проводящих пластин, разделенных изолирующим диэлектрическим материалом. Есть несколько типов конденсаторов: слюдяные, бумажные, керамические, пленочные, алюминиевые, танталовые. Единицей измерения емкости является фарада (Ф), но большинство конденсаторов имеют гораздо меньшие габариты, измеряемые микрофарадами (мкФ). Итак, величина емкости показывает количество заряда, который может хранить этот компонент.
Существует несколько приемов для тестирования конденсаторов:
♦	измерение сопротивления (омметр);
♦	измерение емкости (устройство проверки конденсаторов);
♦	проба на искру;
♦	шунтирование;
♦	замена.
Омметром затруднительно проверять конденсаторы емкостью порядка десятых долей микрофарады и менее, поскольку заряд прибора происходит так быстро, что стрелка не успевает отклониться. Показания, близкие нулевым, свидетельствуют о коротком замыкании в конденсаторе. Элементы емкостью более 0,25 мкФ должны регистрироваться омметром.
Когда вы проверяете конденсатор, установите переключатель пределов измерения омметра на один из верхних диапазонов, например до 10000 Ом, и подключите его к выводам элемента. Предварительно обязательно разрядите конденсатор, замкнув его выводы куском провода или отверткой. Когда вы подключите выводы омметра к контактам конденсатора, стрелка должна сначала отклониться вправо, а затем медленно вернуться к 0. Если этого не произошло,
Исправный конденсатор
Rx10000 	 Rx1QQQ0
WK
Конденсатор	Закороченный
с «обрывом»	конденсатор
Рис. 1.10. Проверка конденсатора с помощью омметра
Тестирование основных элементов
31
значит существует обрыв в конденсаторе. Стрелка не возвращается - это говорит о замыкании в данном элементе (рис. 1.10).
Другой метод, который используется для проверки конденсаторов с большей емкостью, - проба на искру. Подключите на несколько мгновений конденсатор к выводам постоянного источника напряжения. Не забудьте о соблюдении полярности, если проверяете электролитический полярный конденсатор. Убедитесь, что напряжение, которое вы собираетесь приложить, не превосходит номинального напряжения данного элемента цепи (рис. 1.11). Обычно для заряда достаточно 1 с. Не прикладывайте напряжение на долгое время - это повредит элемент или может травмировать вас. После того, как конденсатор зарядится, замкните его контакты с помощью отвертки или аналогичного инструмента с изолированной ручкой, чтобы не получить удар током. Если конденсатор исправен, возникает искра. Отсутствие ее говорит о поломке элемента.
Рис. 1.11. Проверка конденсатора с помощью пробы на искру
Устройство тестирования является полезным прибором для проверки характеристик конденсатора. Причем некоторые из них можно подвергнуть данной процедуре, не отключая от сети. Помимо измерения емкости, это устройство позволяет проверить и такие характеристики, как ток утечки и обрыв. Шунтирование также является действенным благодаря своей оперативности способом проверки конденсатора. В этом случае подозрительный элемент шунтируется другим заведомо исправным конденсатором с номиналом на 10% больше. Во время этой процедуры должна наблюдаться заметная разница в работе изделия или прибора (радио, телевизора и т.п.). Например, неисправный фильтрующий конденсатор часто вызывает заметный гул в радиоприемнике. За счет шунтирования восстанавливается нормальная работа схемы, и посторонние звуки исчезают.
Метод замены, подобно шунтированию, определяет качество конденсатора за счет использования другого конденсатора. При замене вы просто ставите новый элемент с такими же характеристиками и номинальными значениями. Работа изделия или прибора покажет эффект использования компонента. Помните, что не следует превышать номинальное напряжение конденсатора. Элемент с номинальным напряжением 100 В можно заменить только конденсатором 100 В и выше. Иначе он выйдет из строя. Удобным средством при поиске неисправностей являются магазины конденсаторов, особенно, содержащие переключатели для формирования емкости близкого номинала к испытываемому.
32
ГЛАВА 1. Принципы сервисного обслуживания
Эти наборы содержат элементы с наиболее часто встречающимися номиналами, что исключает необходимость искать конкретные конденсаторы в каждом случае. Их можно легко изготовить или купить, они дают быстрый, удобный и доступный способ получения конденсатора для замены.
Полупроводниковые элементы
Понимание основ теории полупроводников может быть серьезным подспорьем для специалиста при тестирований этих элементов. Одним из первых известных полупроводниковых устройств являлся кристаллический детектор. Он состоял из кусочка кристаллического галенита с проволочным контактом и прижимающей пружиной. Это сочетание выпрямляло ток, позволяя ему течь только в одном направлении.
Хотя кристалл галенита был ненадежен, он был первым шагом в применении полупроводников. Развитие современных диодов и транзисторов началось с базовой теории и разработки материалов р- и п-типа.
Для создания материалов р- и n-типа используется кристаллический германий или кремний. Атомный номер кремния 14, с 4 валентными электронами на внешней орбите. Атомный номер германия 32, и он также имеет 4 валентных электрона на внешней орбите (рис. 1.12).
Кремний
Атомное число 14
Рис. 1.12. Строение атомов кремния и германия
Для образования материала p-типа, добавляются примеси, галлий или индий, которые называются трехвалентными, поскольку имеют 3 электрона на внешней оболочке. Когда галлий или индий добавляются к кремнию или германию (которые имеют валентность 4), место одного валентного электрона остается незанятым и называется дыркой. Оно имеет положительный заряд и в результате образуется материал p-типа. Примесь, которая приводит к образованию дырок, называется акцепторной (рис. 1.13).
Для формирования материала n-типа добавляется примесь из мышьяка или сурьмы. Она является пятивалентной, то есть имеющей 5 валентных электронов на внешней орбите. При добавлении в германий или кремний соединяется с 4 валентными электронами и образует 1 свободный электрон, который дает атому отрицательный заряд, поэтому эта примесь называется донорной (рис. 1.14).
Когда материалы р- и n-типа вступают в контакт, образуется р-п-переход. Такая структура называется диодом, поскольку она позволяет току проходить
Полупроводниковые элементы
33
Рис. 1.13. Добавление акцепторной примеси в кристалл вызывает образование дырки, в результате образуется материал р-типа
Рис. 1.14. Добавление донорной примеси в кристалл вызывает образование «лишнего» электрона, в результате образуется материал п-типа
только в одном направлении. Когда к диоду подключена батарея таким образом, что положительный полюс батареи соединен с положительным полюсом диода, а отрицательный полюс батареи соединен с отрицательным полюсом диода, через диод течет ток. Это называется прямым смещением перехода (диода) и
Прямое смещение перехода
Рис. 1.15. Прямое смещение диода
Если положительный полюс напряжения приложен к зоне р с основными носителями заряда - дырками, а отрицательный полюс - к зоне п, где основные носители - электроны - под действием внешнего поля дырки будут отталкиваться
34
ГЛАВА 1. Принципы сервисного обслуживания
положительным потенциалом, а электроны - отрицательным. Под действием этих сил дырки и электроны двигаются навстречу друг другу, к р-n переходу, где происходит их рекомбинация, и в цепи протекает ток.
Изменив полярность включения внешнего источника, можно добиться того, что дырки будут притягиваться к отрицательному полюсу, а электроны - к положительному. Под действием этих сил электроны и дырки будут двигаться в направлении от перехода, вследствие чего переход будет обеднен носителями заряда, число рекомбинаций значительно сократится и ток через переход будет близок к нулю. В этом случае говорят, что к переходу приложено обратное запирающее напряжение.
Обратно смещенный диод показан на рис. 1.6.
Обратное смещение перехода
Рис. 1.16. Обратно смещенный диод
Положительная р-сторона диода называется анодом, а отрицательная п-сторо-на - катодом. Для специалиста важно хорошо разбираться в этом. Стрелка показывает р-сторону. Линия показывает сторону п. Линия или точка, поставленная изготовителем на диоде, показывает катод. Имейте в виду, что изготовители обычно отмечают катод полоской. Когда конец диода с полосой подключен к положительному полюсу источника питания, диод будет смещен в обратную сторону.
Для проверки диода специалист может использовать или цифровой вольтом-метр, или устройство проверки диодов или транзисторов. При проверке диода с помощью омметра вы можете использовать метод измерения низкого/высокого сопротивления. Вы помещаете переключатель диапазонов на RxlOO и подключаете прибор к выводам диода. При прямом смещении омметр должен показывать меньше: от нескольких десятков до нескольких сотен Ом (то есть низкое сопротивление). При обратном смещении омметр должен показывать десятки и сотни кОм (то есть высокое сопротивление). Такие показания означают, что диод, возможно, исправен. Если ваши измерения свидетельствуют в обоих случаях о высоких или низких значениях сопротивления, это означает, что диод, вероятно, неисправен. Рис. 1.17 показывает правильную проверку диода с помощью омметра.
Полупроводниковые элементы
35
Рис. 1.17. Проверка диода с помощью омметра
Большинство диодов можно проверить с помощью омметра. Помните, что когда вы проводите измерения низкое/высокое, настоящая величина сопротивления диода не очень важна при изменении полярности подключения омметра. Если после проверки с помощью омметра остаются какие-либо сомнения, следует заменить диод. Кроме того, помните, что когда диод проверяется внутри цепи, его сопротивление может быть низким в обоих направлениях благодаря возможному шунтированию элементами прибора. Чтобы быть уверенным в исправности прибора, отпаяйте один вывод и снова проверьте диод с помощью омметра. Когда вы заменяете диод, имейте в виду, что он выдерживает только определенное напряжение при включении в обратном направлении. Это называется пиковым обратным напряжением диода. Никогда не превышайте этот параметр, иначе диод выйдет из строя.
Хотя существуют различные типы диодов (стабилитроны, светодиоды, фотопроводящие, варисторы, туннельные), каждый из них имеет свои уникальные характеристики. Когда вы сомневаетесь в качестве прибора, наилучшим методом является замена. Например, стабилитроны могут работать при обратном смещении. Однако этот тип диодов заперт до определенного порога напряжения, или напряжения пробоя, а затем он проводит ток, сохраняя относительно постоянное напряжение. Такая работа дает стабилитрону возможность действовать как стабилизатор напряжения, и его можно использовать для источников питания со стабилизированным напряжением.
Транзистор фактически представляет собой два включенных во встречном направлении диода, комбинацию р-п-р или п-р-п. Первая область транзистора называется эмиттером, вторая - базой, третья - коллектором (рис. 1.18).
Специалист должен понимать принцип действия транзистора. Рис. 1.19 показывает п-р-п транзистор, где переход эмиттер-база смещен в прямом направлении, поэтому он имеет низкое сопротивление току.
Переход коллектор-база имеет высокое сопротивление, так как он смещен в обратном направлении. Отрицательный потенциал батареи заставляет электроны
36
ГЛАВА 1. Принципы сервисного обслуживания
Рис. 1.19. Движение электронов в транзисторе п-р-п
Рис. 1.18. Три части транзистора
эмиттера направляться в базу и очень небольшое число этих электронов соединяться с положительными дырками, большинство же продолжает движение к области коллектора. Это происходит вследствие сильного действия положительного полюса батареи. Электроны замыкают цепь, возвращаясь к источнику питания. Помните, что новые дырки поступают в область базы от батареи, когда электроны заполняют старые.
Поскольку область коллектора имеет более высокое сопротивление, чем эмиттера, любое изменение тока в области эмиттера вызовет пропорциональную реакцию в области коллектора. Проходящий через транзистор сигнал будет, таким образом, усилен.
Величиной усиления сигнала можно управлять, регулируя поток электронов в область базы. Количество электронов, поступающих в область базы, определяет количество электронов, которые имеются в области коллектора. Регулирование числа электронов в базе называется смещением. В транзисторе прямое смещение (смещение перехода эмиттер-база) определяет усиление транзистора. Прямым смещением транзистора можно управлять, увеличивая или уменьшая напряжение или сопротивление области эмиттер-база (рис. 1.19).
Поведение потока электронов в транзисторе р-п-р напоминает действия в транзисторе п-р-п, но ток образуется за счет движения дырок. Положительное воздействие батареи заставляет положительные дырки проходить из эмиттера через область база-коллектор и возвращаться к отрицательному полюсу батареи. Здесь снова, как в случае с электронами в транзисторе п-р-п, небольшое число вакансий заполняется электронами в области базы, но большинство дырок продолжает двигаться в область коллектора. Проводимость обеспечивается за счет тока дырок от эмиттера к коллектору. Поток электронов противоположен потоку дырок. Поэтому считается, что поток электронов в этой цепи идет в обратном направлении, от коллектора к эмиттеру. Пусть вас не смущает такое объяснение, в целом, основная функция обоих типов транзисторов в схемах одинакова. Оба транзистора усиливают ток (рис. 1.20).
Полупроводниковые элементы
37
Рис. 1.20. Движение электронов в транзисторе р-п-р
Существуют три основные схемы включения транзисторов - с общей базой, общим эмиттером и общим коллектором. Каждая схема обладает собственными уникальными характеристиками. Рис. 1.21. и табл. 1.1. показывают их основные различия.
Схема с общей базой
Схема с общим эмиттером Схема с общим коллектором
Рис. 1.21. Три основных схемы включения транзистора
Таблица 1.1. Характеристики трех основных схем включения транзистора
Функция транзистора	Схема с общей базой	Схема с общим эмиттером	Схема с общим коллектором
Коэффициент усиления по напряжению	Высокий	Высокий	Низкий
Коэффициент усиления по току	Низкий	Высокий	Высокий
Входной импеданс	Низкий	Умеренный	Высокий
Выходной импеданс	Высокий	Высокий	Низкий
Коэффициент усиления по мощности	Средний	Высокий	Умеренный
Работа схем и рекомендации по поиску неисправностей в них более подробно обсуждаются в следующих главах. Транзисторы обычно тестируют с помощью специального устройства, или с помощью омметра (рис. 1.22).
Имейте в виду, что транзистор фактически представляет собой два включенных в разные стороны диода и, следовательно, может быть проверен аналогично
38
ГЛАВА 1. Принципы сервисного обслуживания
Рис. 1.22. Проверка транзистора на короткое замыкание и обрыв с использованием омметра
диоду. Для тестирования транзистора на короткое замыкание или обрыв подключите положительный контакт омметра (RxlOO) к базе, а отрицательный - к эмиттеру п-р-п-транзистора. Теперь переход база-эмиттер смещен в прямом направлении и его сопротивление должно быть низким. Поменяв контакты местами мы сместим переход база-эмиттер в обратном направлении, и омметр будет показывать большое сопротивление. Переход коллектор-база проверяется аналогично.
Помните, что всегда должны наблюдаться малые/болыпие показания омметра. Если при любом положении контактов прибора наблюдается большое сопротивление, это означает, что в транзисторе произошел обрыв, а в случае малого сопротивления в обоих измерениях - короткое замыкание (при проверке не включенного в схему транзистора).
Во многих случаях можно проверить подобным образом транзисторы и в схеме. Если при тестировании в схеме данные показывают на вероятную неисправность транзистора, рекомендуется извлечь его из схемы и снова проверить.
Использование омметра является способом, который помогает определить, какому назначению соответствует конкретный вывод и/или качество транзистора. Сначала найдите эмиттер и коллектор, используя руководство изготовителя со схемой или с помощью измерений малое/болыпое омметром. Поместите один контакт омметра на эмиттер, а другой - на коллектор. Омметр покажет некую величину. Теперь закоротите базу на эмиттер. Сопротивление на приборе должно возрасти. При замыкании базы на коллектор сопротивление должно уменьшаться (рис. 1.23).
Полевой транзистор (ПТ) представляет собой класс приборов, который часто используется в электронных схемах. Хотя по внешнему виду он похож на биполярный транзистор (n-p-п и р-п-р), полевой транзистор имеет другую конструкцию: три вывода - исток, затвор и сток, которые соответствуют эмиттеру, базе и коллектору биполярного транзистора (рис. 1.24).
Полупроводниковые элементы
39
Рис. 1.23. Проверка качества транзистора с помощью омметра
Сток о
Сток
о
Затвор
о—
Затвор
о-
6
Исток
Исток
Рис. 1.24. Изображение на схеме полевых транзисторов с каналами пир типа
Движение заряженных частиц происходит между истоком и стоком по «резистивной», то есть образованной полупроводниковой подложкой, части ПТ. Затвор представляет собой диодный переход, который смещен в обратном направлении, в отличие от прямо смещенного перехода биполярного транзистора. Поэтому затвор имеет очень высокое сопротивление, обеспечивая высокий входной импеданс, необходимый во многих цепях.
Устройство, имеющее плоскостной затвор, называется полевым транзистором с управляющим р-п-переходом между затвором и каналом. Такой ПТ можно проверить с помощью омметра аналогично биполярному транзистору. Омметр (RxlOO) покажет результаты, аналогичные измерениям диода (болыпое/малое сопротивление) между стоком и затвором. Подобным же образом проверяется переход исток-затвор. Большие величины сопротивления, измеренные омметром, в обоих случаях указывает на обрыв в транзисторе, малые - на замыкание. В исправном транзисторе омметр при включении между истоком и стоком показывает малое сопротивление при любой полярности. Большое сопротивление при обоих измерениях указывает на обрыв в цепи (рис. 1.25).
40
ГЛАВА 1. Принципы сервисного обслуживания
Рис. 1.25. Проверка полевого транзистора с управляющим р-п-переходом на обрыв и короткое замыкание с использованием омметра
Аббревиатура МОП обозначает металл-оксид-полупроводниковый полевой транзистор. Прибор называют также полевым транзистором с изолированным затвором, поскольку затвор здесь электрически изолирован от канала исток-сток (то есть от полупроводниковой подложки) тонким слоем диоксида кремния (рис. 1.26). МОП-транзистор может иметь канал p-типа или п-типа. Ток, протекающий в p-канале, уменьшается за счет положительного напряжения и увеличивается при приложении отрицательного напряжения. Существует три основных типа МОП-транзисторов, различающиеся по зависимости состояния канала от напряжения на затворе.
1.	При прямом смещении проводит ток от истока к стоку и остается в режиме «отсечки» (то есть тока нет) при нулевом смещении.
2.	Проводит при нулевом смещении и уменьшает ток при обратном смещении, а при достаточном обратном смещении переходит в режим отсечки.
3.	При нулевом смещении обладает определенной проводимостью. При обратном смещении ток уменьшается, а при прямом возрастает.
о—
Затвор
Сток о
Подложка
6
Исток
Рис. 1.26. Схематическое изображение МОП-транзисторов с п- и р-каналом
Полупроводниковые элементы J
41
Транзисторы МОП имеют высокий входной импеданс, кроме того, они чувствительны к статическому электричеству и с ними надо обращаться аккуратно.
По этой причине при перемещении у МОП-транзисторов затвор и исток закорачиваются. Для этого их выводы скручиваются вместе, или на них надевается специальная пружина. Защищенный МОП-транзистор с двойным затвором позволяет решить эту проблему, правда, за счет уменьшения входного сопротивления (рис. 1.27).
Затвор 2
Затвор 1
—о Сток
Подложка/корпус
6
Исток
Рис. 1.27. Схематическое изображение двухзатворного МОП-транзистора и каналом п-типа
При соединении выводов затворов вместе он работает как обычный МОП-транзистор, и его можно проверить с помощью омметра. Межу затвором и стоком или истоком должно быть нулевое сопротивление. Какие-либо показания омметра означают короткое замыкание. Для проверки состояния перехода сток-исток подключите между затвором и стоком резистор 15 кОм. Если сопротивление изменяется, это означает, что MOSFET исправен. Но имейте в виду, что наилучшим способом проверки является замена или использование тестового оборудования (рис. 1.28).
Резистор 15 кОм Сток
Рис. 1.28. Проверка МОП-транзистора на обрыв и короткое замыкание с использованием омметра
Существуют различные методы тестирования. Многие из них можно прямо или косвенно использовать для определения работоспособности транзистора. Помимо проверки сопротивления и использования устройств тестирования компонентов можно также применять:
♦	измерения напряжения;
♦	нагревание и/или охлаждение;
♦	контроль прохождения сигналов;
♦	замену;
♦	запирание транзистора.
42
ГЛАВА 1. Принципы сервисного обслуживания
Измерения напряжения могут быть полезны для определения работоспособности схемы с транзистором. Например, на схеме изготовителем указаны номинальные рабочие значения напряжения. Если в транзисторе обрыв или он не проводит ток, то напряжение на коллекторе будет полным - 10 В, а не 6 В как в обычном состоянии. Когда прибор закорочен, через него будет течь чрезмерный ток. Это увеличит нагрузку цепи. Поэтому если напряжение на коллекторе низкое, это может указывать на короткое замыкание транзистора или наличие неисправного резистора смещения (рис. 1.29).
Рис. 1.29. Типичные рабочие напряжения транзистора
Часто можно проверить транзисторы при помощи температурного теста. Сначала нагрейте предположительно неисправный прибор с помощью фена или горячего жала паяльника. Если это вызывает пробой, используйте химический охладитель или холодный воздух от вентилятора. Если при охлаждении транзистор возобновляет нормальную работу, его можно считать неисправным. Термозависимый режим работы обычно свидетельствует о неисправности и чреват выходом из строя при продолжительной работе.
Повышение температуры увеличивает количество заряженных частиц, что в свою очередь вызывает выделение тепла, которое заставляет проводить еще больший ток. В конце концов, транзистор разрушает себя. Такой процесс называется тепловой пробой. Помните: не следует без особой надобности подвергать прибор слишком сильной тепловой атаке, так как это может привести к фатальным повреждениям.
Контроль прохождения сигналов также может быть использован для локализации неисправного транзистора. Например, подавая сигнал в каждый каскад приемника, начиная с динамика и продвигаясь к входному каскаду, вы найдете место, где неисправный транзистор (в котором произошел, например, обрыв) не позволяет сигналу пройти.
Замена транзистора может быть эффективна для определения неисправного прибора. Помните, что при этом вы, должны использовать аналогичную модель. Многие специалисты предпочитают сначала присоединить новый транзистор к обратной стороне печатной платы, где расположены дорожки, чтобы удостовериться, что подозреваемый прибор действительно неисправен. Это может сэкономить ценное рабочее время.
Полупроводниковые элементы
43
Другой прием заключается в замыкании базы и эмиттера, при котором происходит запирание транзистора (рис. 1.30).
Рис. 1.30. Отключение транзистора с помощью закорачивания базы и эмиттера
В этом случае должна наблюдаться заметная разница в работе всего устройства по сравнению с нормальным режимом. Если явных перемен не обнаружено, прибор, скорее всего, неисправен. При проведении этого теста соблюдайте осторожность, чтобы не замкнуть коллектор и базу, поскольку это может заставить транзистор пропускать большой ток и вывести его из строя. Кроме того, этот метод пригоден только для некоторых схем, в частности для усилителей и генераторов колебаний.
Способ отключения транзистора можно сравнить с поиском неисправной свечи в автомобиле. Для успешного теста необходимо при работе двигателя в режиме холостого хода на короткое время отключить каждую свечу. Таким образом далее ведется наблюдение за двигателем. Если проведенная операция повлияла на его работу, значит, свеча исправна. Отсутствие явных перемен говорит об обратном.
Отметим, однако, что при замене транзистора необходимо соблюдать некоторые предосторожности:
♦	никогда не перегревайте транзистор;
♦	используйте теплоотвод;
♦	используйте паяльник 35 Вт или менее;
♦	используйте для замены только такой же или рекомендованный транзистор;
♦	идентифицируйте положение эмиттера, коллектора и базы.
Еще один тип полупроводниковых приборов, тиристор, представляет собой последовательное соединение трех диодов в разном направлении (рис. 1.31).
Тиристор работает как управляемый выпрямитель и может проводить ток, если к затвору приложено достаточное напряжение (или напряжение на аноде будет нарастать с недопустимой для данной марки прибора скоростью). Это происходит до тех пор, пока его величина не уменьшится почти до нуля.
Данный полупроводниковый прибор является весьма распространенным элементом в системах электропитания, в автоматике. В частности, используется в устройствах подачи сигнала тревоги при несанкционированном проникновении.
44
ГЛАВА 1. Принципы сервисного обслуживания
Анод
Катод
Рис, 1.31. Конструкция тиристора
Его работоспособность лучше всего проверять методом замены или с помощью омметра.
Для теста омметром, установите переключатель шкалы в положение RxlO ООО. При подключении отрицательного вывода к катоду, а положительного к аноду, исправный тиристор должен показать более 1 МОм. Малое или нулевое сопротивление означает замыкание. Для проверки работы управляющего электрода закоротите его вывод на анод, при этом омметр должен показать сопротивление, близкое к 0.
Интегральные микросхемы
Хотя реальная конструкция интегральных микросхем (ИМС) достаточно сложна, процесс их проверки легок для понимания.
Существует три основных конструктивных типа интегральных схем: в корпусе с двухрядным расположением выводов (DIP), круглые и плоские (рис. 1.32).
Одна небольшая ИМС состоит из нескольких резисторов, конденсаторов, диодов и транзисторов, которые соединены в микросхему (рис. 1.33).
Они герметически закрыты в керамическом или пластмассовом корпусе. Два основных метода изготовления микросхем называются монолитным и гибридным. При изготовлении монолитных (или стандартных) ИМС компоненты выполняются на одной подложке. Гибридные имеют специальное назначение, что требует отдельных компонентов с последующей сборкой на подложке. Подход к проверке ИМС остается прежним.
Несмотря на то что интегральные схемы имеют различные формы, типы и размеры, для поиска неисправностей обычно применяются следующие стандартные методы:
Интегральные микросхемы
45
Рис. 1.32. Три основных конструкции интегральных микросхем
Рис. 1.33. Типичный образец выполненного в виде интегральной микросхемы предварительного звукового усилителя каскада с выходной мощностью 1 Вт на примере ECG 1043
♦	использование органов чувств;
♦	нагрев и/или охлаждение;
♦	проверка напряжения;
♦	шунтирующий конденсатор;
♦	замена;
♦	использование логического импульсного пробника.
Первым делом осмотрите возможные повреждения: заржавевшие, дефектные выводы, разъемы, паяные соединения. Убедитесь, что ИМС полностью вставлена в панельку. Сверьте маркировку изготовителя с заданным идентификационным номером ИМС. Таким образом можно убедиться, что используется нужная интегральная микросхема, и она правильно размещена.
46
ГЛАВА 1. Принципы сервисного обслуживания
Когда схема работает, коснитесь верхней части изолирующего корпуса пальцем для проверки температуры. Горячая ИМС - индикатор неисправного или закороченного элемента. Большинство микросхем должны быть холодными или теплыми.
Нагрев и/или охлаждение также часто используются для проверки ИМС на дефекты. Как было указано выше, подозрительный элемент, работоспособность которого зависит от температуры, можно проверить с помощью наблюдения функционирования схемы во время нагрева феном и последующего охлаждения или замораживания. Неисправная, термозависимая ИМС при нагреве прекратит работать, но снова активируется при охлаждении.
Проверку напряжения можно легко осуществить с помощью вольтметра или осциллографа. Измерьте напряжение на каждом выводе ИМС и наблюдайте форму сигнала на экране измерительного прибора. Затем сравните результаты с указанными изготовителем параметрами. Несоответствие напряжения и сигналов говорит о возможной неисправности ИМС или связанных с ней элементов.
Иногда подозрительную ИМС можно игнорировать с использованием конденсатора, который проводит сигнал в обход (рис. 1.34). Если сигнал возрастает при шунтировании ИМС, это означает, что схема, возможно, неисправна.
Рис. 1.34. Шунтирование ИМС с помощью конденсатора
Любую подозрительную ИМС можно заменить аналогичной исправной. Этот метод экономит ценное время специалиста по обслуживанию. Но если взглянуть на вещи реально, мастера не могут полагаться только на эту технику, поскольку она потребует очень большого количества ИС, а это достаточно дорого. Имейте также в виду, что если причина проблемы неправильно определена, то замена может привести к выходу из строя и новой микросхемы. Обычно на печатных платах установлено довольно много ИМС, и часто гораздо более практичным является замена всей платы.
Для проверки ИМС существуют специальные тестеры и наборы, однако в ряде случаев они могут работать только с ИМС вне схемы. Можно использовать компараторы с многоконтактными зажимами. Они очень удобны, но, к сожалению, дороги.
Интегральные микросхемы
47
Цифровой логический пробник является, наверное, одним из самых важных тестовых инструментов для специалистов. Этот небольшой ручной прибор обычно используется для тестирования логических импульсов и уровней. Пробник содержит сложную схему, которая с помощью светодиодов (СД), срабатывающих по высокому или низкому уровням, индицирует сигналы логических уровней схемы. Подобно вольтметру логический пробник присоединяется к каждому выводу ИС или к каждой точке, где проводится контроль. Результат сравнивается с данными производителя (рис. 1.35).
Рис. 1.35. Использование логического пробника для тестирования ИМС
Концепция «черного ящика» является стандартным подходом к тестированию ИМС, которая рассматривается как некое устройство с неизвестным принципом действия, но с очевидными входными и выходными характеристиками. Если вы знаете, что должно быть на входе и выходе ИМС, вы измеряете эти величины и по результатам определяете, исправна ли эта микросхема. Такое представление о интегральной микросхеме часто устраняет необходимость понимания ее сложной внутренней структуры. Например, вы можете использовать осциллограф для замера входных и выходных напряжений и сигналов, а затем сравнить результаты с приведенными изготовителем диаграммами. Схемы с цифровой логикой обычно имеют два логических уровня О и 1. Подача соответствующих тестовых сигналов позволяет определить, происходит ли переключение.
Метод контроля прохождения сигналов с использованием осциллографа обычно предпочтителен для измерений напряжения и сопротивления, поскольку правильная работа ИМС зависит от динамических характеристик схемы. Метод контроля сигналов будет подробно объяснен в последующих главах с помощью диаграмм.
48
ГЛАВА 1, Принципы сервисного обслуживания
Когда обнаружена неисправная ИМС, замените ее, имея в виду следующее:
1.	Закажите точно такой же компонент для замены.
2.	Вставьте или разместите микросхему в точном соответствии с оригинальной ИМС. Очень легко вставить ИМС в противоположном направлении! Всегда идентифицируйте контакт 1 микросхемы - производители часто помечают его небольшой точкой.
4.	Когда вы вставляете ИМС с 16 контактами в планарном корпусе в гнездо, можно ненароком согнуть ее выводы. Прежде чем нажимать на ИМС, чтобы полностью вставить ее в панельку, убедитесь, что все выводы направлены верно. Никогда не перегревайте ИМС. Если необходимо произвести пайку, используйте небольшой паяльник мощностью 35 Вт.
5.	Не злоупотребляйте припоем, избегайте слишком большого стекания его на плату. Это может вызвать образование перемычек между соседними контактами и компонентами.
6.	Пользуйтесь тампонами или отсосами для удаления лишнего припоя.
Электронные лампы
В настоящее время электронные лампы используются редко, поэтому мы лишь коснемся теории их работы.
Электронные лампы применяются в некоторых военных и промышленных направлениях, в радиовещании, в усилителях для гитар. Некоторые музыканты-гитаристы предпочитают более «мягкий» тип ограничения амплитуды звука усилителей на электронных лампах по сравнению с транзисторными усилителями. Помимо электронно-лучевых трубок, специалист может изредка встретить диоды, триоды, тетроды, пентоды, газовые и многоэлементные трубки.
Диодная лампа состоит из отрицательного катода и положительного анода. При нагревании отрицательный катод излучает электроны. Приложение напряжения к аноду и катоду ведет к возникновению тока в цепи. Процесс излучения электронов из катода называется термоэлектронной эмиссией. Когда полярность анодного напряжения изменяется, термоэлектронной эмиссии не происходит и тока не возникает. Это, подобное клапану, действие обеспечивает протекание заряженных частиц только в одном направлении, что позволяет использовать этот прибор в качестве выпрямителя.
Количество электронов, которые после эмиссии с катода достигают анода, в триодной лампе регулируется с помощью размещенной в виде ячеек проволоки, называемой сеткой. Эта управляющая сетка имеет отрицательный заряд по отношению к катоду. Чем более отрицательна сетка, тем меньше ток, чем менее отрицательна сетка, тем больше ток.
Отсечкой называется точка, в которой сетка становится слишком отрицательной, и ток прекращается.
Насыщением называется точка, в которой сетка наименее отрицательна, и ток между сеткой и катодом максимален.
Для минимизации межэлектродной емкости, уменьшающей усиление триода на высоких частотах, в тетродной лампе добавлена еще одна сетка, которая называется экранирующей.
Электронные лампы
49
В определенных случаях требуется повышенное усиление. Тогда добавляется третья сетка, которая называется защитной и лампа (пентод). Защитная сетка пентода устраняет вторичную эмиссию (неконтролируемые ускоренные электроны около анода) и обеспечивает управление этими электронами.
Мощные лампы обычно используются в соответствующих установках. Газовые, заполненные азотом или парами ртути, - в сильноточных приборах. Тиратрон -типичный пример газонаполненной трубки. Многоэлементные состоят из двух и более ламп, помещенных в единый стеклянных корпус. Пятисеточный преобразователь - образец стандартной многоэлементной лампы. Он одновременно содержит каскады гетеродина и смесителя приемника.
Для тестирования электронных ламп могут использоваться, например, следующие приемы:
♦	постукивание;
♦	осмотр;
♦	устройство проверки ламп;
♦	замена.
Хотя электронные лампы используются сегодня редко, вы можете встретить их, особенно при обслуживании старых гибридных телевизоров, электроннолучевых трубок компьютерных мониторов, промышленного и коммуникационного оборудования. Для проверки качества лампы при работе схемы используйте пластмассовый конец отвертки. Аккуратно постучите по каждой из них, слушая и наблюдая работу схемы, например радиоприемника или телевизора. Если при постукивании что-либо слышно или видно, наблюдаются помехи в изображении, то лампа, возможно, вышла из строя. Имейте в виду, что такие же проблемы могут быть вызваны ослабленным, окислившимся контактом или некачественной пайкой.
Можно также быстро проверить исправность некоторых ламп, наблюдая за свечением нити накала. Если нить накала оборвана, то лампа не светится и не работает. Проверить ее можно также с помощью омметра. Исправная нить накала должна иметь сопротивление около 0, а при обрыве сопротивление будет бесконечно большим.
Тестер ламп может быть очень полезным инструментом, но проблемы не исключаются. Пару-тройку лет назад не было ничего более комичного, чем наблюдать любителя наборов «сделай сам», который вынимает каждую лампу из своего телевизионного приемника и несет их в ближайший магазин для проверки тестером. К сожалению, тестер не может выявить неисправности всех существующих типов ламп, но понимание назначения каждой лампы и возможностей тестера поможет сэкономить время и деньги. Например, тестеры ламп могут не соответствовать рабочим параметрам схемы. Они не могут адекватно измерять межэлектродную емкость. Кроме того, гетеродины, ограничители и лампы высокого напряжения (для которых важны характеристические кривые) трудно проверить с помощью тестера ламп. Лучший совет здесь: если сомневаетесь, найдите аналог по приемлемой цене и установите новую лампу. Это может сэкономить много времени. Но помните, что если поломка произошла из-за
50
ГЛАВА 1. Принципы сервисного обслуживания
проблем в схеме, такой способ только повредит новому элементу. Например, если при обслуживании электронного прибора выяснилось, что лампа выпрямителя закорочена, ищите также и короткозамкнутый конденсатор. Может быть, именно фильтрующий конденсатор является источником короткого замыкания. Кроме того, перед заменой любой лампы рекомендуется тщательно проверить окружающие компоненты на наличие обугленных резисторов или других проблем.
В отличие от транзисторов, которые теоретически могут работать до бесконечности, жизнь электронных ламп ограничена вследствие изнашиваемости катода, который со временем испускает все меньше и меньше электронов. Кроме того, механические вибрации, излишнее нагревание и ток способствуют нарушению герметичности баллона лампы, что ведет к поломке.
Обязательно, убедитесь, что вы используете аналог элемента в качестве замены и чистое неокисленное гнездо для лампы. Кроме того, будьте внимательны и не согните контакты.
Конденсаторы сверхбольшой емкости
Конденсаторы сверхбольшой емкости, которые также называют двухслойными или ионисторами очень вместительны. Они могут хранить в сотни раз больше энергии, чем обычные и работают за счет движения заряженных ионов. Состоят
Рис. 1.36. Ионистор 10 Ф
из нереактивных пористых плат, помещенных в электролитический раствор, с очень большой площадью поверхности. Электрическая энергия накапливается электростатически. Ток утечки также очень небольшой. Это обеспечивает способность конденсатора поддерживать колоссальную емкость. Ионисторы дают много преимуществ по сравнению с обычными конденсаторами и аккумуляторными батареями: быстрый заряд, высокая энергия, малый вес, высокая надежность, длительный срок службы, простота в техническом обслуживании и применяются в различных областях: в медицинских приборах, компьютерах, детских игрушках, электроинструментах, радиопередатчиках, гибридных электрических средствах передвижения, источниках резервного электропитания.
На рис. 1.36 показан пример ионистора фирмы Maxwell Technologies, который весит всего 6,4 г, но обеспечивает емкость около 10 Ф, что является идеальным для питания малогабаритных бытовых электронных изделий.
При использовании вместе с батареями ионисторы могут также увеличить эффективность и позволить уменьшить вес и размер батарей за счет подачи дополнительного питания при пиковых нагрузках.
Одним из наиболее популярных применений двухслойных конденсаторов является автомобильная промышленность. Они используются в рекуперативных тормозных системах, дизель-электрических автобусах и, совместно
Катушки индуктивности
51
с электролитическими батареями, в гибридных средствах передвижения. Ионисторы могут работать дольше, эффективнее при любом напряжении в пределах своего номинального, в более широком температурном диапазоне, чем батареи, в отличие от которых ионисторы можно установить незаряженными, чтобы затем быстро зарядить.
Использование ионисторов совместно с батареями может обеспечить отличный источник питания и энергии для гибридных средств передвижения. Они могут увеличить срок службы свинцово-кислотных аккумуляторов за счет подачи дополнительного питания при пиковых нагрузках и помочь обеспечить быстрый разгон и рекуперативное торможение. Ионистор РС2500 фирмы Maxwell Technologies имеет емкость 2700 Ф, что обеспечивает 8400 Дж энергии при напряжении 2,5 В. Это делает его идеальным для применений в гибридных средствах передвижения (рис. 1.37). К тому же он мало весит, у него небольшой ток утечки и прекрасная циклическая надежность, что делает его пригодным и для применений, не связанных со средствами передвижения, например для резервных источников питания во время прекращения подачи питания на промышленных предприятиях и в медицинских учреждениях.
Рис. 1.37. Ионистор 2700 Ф
Как и в других электрических компонентах, в ионисторах могут возникать такие неисправности, как внутренние замыкания, обрывы, утечки в ячейках, механические разрушения, которые часто связаны с внутренним напряжением вследствие излишней вибрации, термического расширения, механического повреждения или неправильного использования. Обычные тесты ионисторов включают заряд-разряд и измерение эквивалентного последовательного сопротивления. Параметры ионистора: начальное рабочее напряжение, ток разряда, минимальное напряжение под нагрузкой, напряжение после снятия нагрузки и время разряда от начального заряда до минимального напряжения - можно измерить для проверки его качества. Приложение 12 детально описывает тестовые процедуры фирмы Maxwell Technologies для проверки ионистора.
Катушки индуктивности
Катушка индуктивности представляет собой электромагнит, который используется во многих приложениях: трансформаторах, фильтрах, генераторах,
52
ГЛАВА 1. Принципы сервисного обслуживания
фазовращателях, интеграторах и дифференциаторах. По сути катушка препятствует всякому изменению тока, и это свойство часто называют индуктивностью. Она создает магнитное поле, которое вызывает противодействующую электродвижущую силу. Индуктивность L измеряется в Генри (Гн). Существуют различные типы катушек: без сердечника, со стальным сердечником, с ферритовым сердечником, постоянной индуктивности и переменной индуктивности. Обычным применением для них является использование в цепях фильтров. В целом они пропускают низкие частоты и ослабляют высокие. Конденсаторы, с другой стороны, пропускают высокие частоты и ослабляют низкие. Поэтому, когда конденсаторы и катушки используются совместно, они могут работать как фильтр. Например, в звукоусилительной системе индуктивность может использоваться для ослабления высокочастотной составляющей звукового сигнала, подаваемого к низкочастотному динамику, а конденсатор может использоваться для ослабления низкочастотной составляющей сигнала в динамике высоких частот. Комбинация катушки и конденсатора может использоваться для формирования среднечастотного диапазона для динамика средних частот.
Многие изолированные проводники можно протестировать с использованием омметра. Хотя часто возникают и короткие замыкания обмоток, большинство неисправностей связаны с обрывом. При измерениях омметром катушка, в зависимости от размера и числа витков обмоток, должна иметь сопротивление от 0 до нескольких сот Ом. Как правило, чем крупнее катушка, тем больше сопротивление.
Закороченная катушка должна иметь нулевое сопротивление, а с обрывом показывать бесконечное противодействие электрической цепи. С помощью омметра может быть трудно определить, закорочена ли катушка, поскольку замыкание одного или нескольких витков может не повлиять на сопротивление катушки, которая изначально имеет небольшое сопротивление. Поэтому может быть необходимо использовать специальный измеритель индуктивности.
Вопросы для самоконтроля
Выберите наилучший ответ:
1.	Какой из следующих факторов не является причиной неисправности: а) тепло;
б)	влага;
в)	неправильная установка;
г)	животные и грызуны;
д)	никакой из перечисленных.
2.	Какое из перечисленных чувств обычно не используется специалистами по поиску неисправностей: а) зрение;
б)	слух;
в)	осязание;
г)	вкус;
д)	запах.
Вопросы для самоконтроля
53
3.	Горячее дымящееся устройство или прибор часто является признаком того, что возникла неисправность:
а)	короткое замыкание;
б)	замыкание на землю;
в)	обрыв цепи;
г)	все перечисленное;
д)	ничего из перечисленного.
4.	Если цепь имеет бесконечное сопротивление, эта неисправность называется:
а)	короткое замыкание;
б)	замыкание на землю;
в)	обрыв;
г)	все перечисленное;
д)	ничего из перечисленного.
5.	Измерения напряжения часто выполняются с помощью вольтметра или: а) амперметра;
б)	осциллографа;
в)	омметра;
г)	ваттметра;
д)	никаким из перечисленных приборов.
6.	Подача сигнала или контроль за его прохождением - это метод, который часто используется специалистами при поиске неисправностей:
а)	электродвигателей;
б)	проводки бытового назначения;
в)	промышленной проводки;
г)	радио;
д)	любого из перечисленных.
7.	Метод, при котором компонент с подозрением на неисправность заменяется другим, называется:
а)	обход;
б)	замена;
в)	шунтирование;
г)	оба: «б» и «в».
8.	Соединение с холодной пайкой лучше всего исправить с помощью:
а)	замены;
б)	шунтирования;
в)	повторной пайки;
г)	охлаждения;
д)	замораживания.
9.	Когда вы используете пошаговый анализ при поиске неисправностей, первым шагом должен быть:
а)	обсуждение дефекта с заказчиком;
б)	сбор сервисной информации;
в)	выбор метода поиска неисправностей;
г)	ремонт;
д)	все, указанное выше.
54
ГЛАВА 1. Принципы сервисного обслуживания
10.	Диаграмма, которая иллюстрирует компоненты изделия или прибора, называется:
а)	однолинейная схема;
б)	принципиальная схема;
в)	калька;
г)	эскизная схема;
д)	схематический чертеж.
11.	Компонент, в котором произошел обрыв, имеет:
а)	нулевое сопротивление;
б)	бесконечное сопротивление;
в)	оба: «а» и «б»;
г)	ничего из перечисленного;
д)	небольшое сопротивление.
12.	Годный плавкий предохранитель должен иметь:
а)	нулевое сопротивление;
б)	бесконечное сопротивление;
в)	небольшое сопротивление;
г)	оба: «а» и «б»;
д)	ничего из перечисленного.
13.	Физическая величина резистора, которая определяет способность резистора рассеивать тепло, измеряется в:
а)	омах;
б)	вольтах;
в)	ваттах;
г)	фарадах;
д)	ничего из перечисленного.
14.	Новый, полностью заряженный кислотный аккумулятор при измерении напряжения должен показывать:
а)	более 12 В;
б)	2 В;
в)	И В;
г)	12 В;
д)	иное.
15.	Конденсаторы можно проверить:
а)	омметром;
б)	пробой на искру;
в)	шунтированием;
г)	только «б» и «в»;
д)	«а», «б» и «в».
16.	Для изготовления кристалла р-типа:
а)	добавляется пятивалентный галлий;
б)	добавляется трехвалентный индий;
в)	добавляется пятивалентная сурьма;
г)	добавляется трехвалентный мышьяк;
д)	ничего из перечисленного.
Вопросы для самоконтроля
55
17.	Термин «акцептор» употребляется для обозначения:
а)	добавление пятивалентного элемента в кристалл;
б)	добавление трехвалентного элемента в кристалл;
в)	оба «а» и «б»;
г)	ничего из перечисленного выше.
18.	Фактически транзистор представляет собой:
а)	один диод;
б)	два диода, включенные встречно;
в)	три диода, включенные встречно;
г)	четыре диода, включенные встречно;
д)	ничего из перечисленного.
19.	Высокий коэффициент усиления по напряжению и низкий коэффициент усиления по току являются характеристиками:
а)	схемы с общей базой;
б)	схемы с общим эмиттером;
в)	схемы с общим коллектором;
г)	оба «а» и »в»;
д)	ничего из перечисленного.
20.	Если рабочее напряжение коллектора транзистора намного меньше нормального, это может означать:
а)	неисправный фильтр;
б)	обрыв в резисторе;
в)	обрыв в транзисторе;
г)	замыкание в транзисторе;
д)	ничего из перечисленного.
21.	Для отключения транзистора для поиска неисправностей:
а)	закоротить эмиттер и базу;
б)	закоротить базу и коллектор;
в)	закоротить затвор и анод;
г)	«а» или «б»;
д)	ничего из перечисленного.
22.	Тиристор можно рассматривать как встречное включение дио-
дов, и он состоит из анода, катода и.
а)	двух, анода;
б)	трех, управляющего электрода;
в)	четырех, базы;
г)	двух, эмиттера;
д)	трех, анода.
23.	Когда вы проверяете ИМС, работоспособность которых изменяется в зависимости от температуры, наилучшим методом является:
а)	проверка напряжения;
б)	проверка сопротивления;
в)	нагревание и /или замораживание;
г)	проверка тока;
д)	шунтирование.
56
ГЛАВА 1. Принципы сервисного обслуживания
24.	Лампа с тремя сетками это:
а)	триод;
б)	тетрод;
в)	пентод;
г)	многосеточная лампа;
д)	мощная лампа.
25.	Какой из перечисленных способов не используется обычно при поиске неисправностей электронных ламп:
а)	постукивание;
б)	устройство проверки ламп;
в)	«Шунтирование»;
г)	замена;
д)	оба: «а» и «б».
26.	Затвор в полевом транзисторе обычно:
а)	обратно смещен;
б)	прямо смещен;
в)	не смещен;
г)	ничего из перечисленного.
27.	МОП транзистор часто называют:
а)	полевой транзистор;
б)	биполярный транзистор;
в)	полевой транзистор с изолированы затвором МДП;
г)	тиристор.
28.	МОП транзистор с индуцированным p-каналом проводит при:
а)	прямом смещении;
б)	обратном смещении;
в)	нулевом смещении;
г)	ничего из перечисленного.
29.	Ток в МОП транзисторе с индуцированным n-каналом уменьшается при:
' а) прямом смещении;
б)	обратном смещении;
в)	нулевом смещении;
г)	ничего из перечисленного.
30.	Ионистор иначе называется:
а)	двухслойный конденсатор;
б)	диэлектрический конденсатор;
в)	конденсатор накопления энергии;
г)	электростатический конденсатор.
Вопросы и проблемы
1.	Перечислите и поясните семь причин выхода из строя электронных и электрических устройств.
2.	Перечислите и поясните четыре чувства, которые обычно используются при поиске неисправностей.
Вопросы для самоконтроля
57
3.	Каковы четыре причины неисправностей в схемах? Расскажите, чем они отличаются друг от друга.
4.	Каковы характеристики короткого замыкания?
5.	Каковы характеристики обрыва в схеме?
6.	Каковы характеристики замыкания на землю в схеме?
7.	Каковы характеристики наличия механических проблем в схеме?
8.	Объясните разницу между терминами «шунтирование» и «замена».
9.	Опишите метод контроля прохождения сигнала.
10.	Перечислите и объясните различные типы технических чертежей.
11.	Опишите способы поиска неисправностей конденсаторов.
12.	Назовите несколько типов конденсаторов.
13.	Опишите структуру диода.
14.	Объясните, как тестировать диод.
15.	Что такое кристаллический детектор?
16.	Опишите структуру транзистора.
17.	Опишите, как тестировать транзистор.
18.	Опишите, как тестировать тиристор.
19.	Опишите различные методы, которые используются для поиска неисправностей транзисторов.
20.	Опишите различные методы, которые используются для поиска неисправностей интегральных микросхем.
21.	Опишите различия между некоторыми типами электронных ламп.
22.	Опишите основные способы проверки электронных ламп.
23.	Почему использовать специальные тестеры для проверки электронных ламп следует с осторожностью?
24.	Что такое тиристор?
25.	Что такое тиратрон?
26.	Расскажите, как проверять полевой транзистор.
27.	Что такое МОП?
28.	Расскажите о различных типах МОП-транзисторов.
29.	Расскажите, как проверить МОП-транзистор.
30.	На что следует обратить особое внимание при транспортировке и работе с МОП-транзисторами?
Контрольно-измерительные приборы для электронных устройств
По мере того как электронное оборудование и изделия становятся все более сложными, постоянно возрастает потребность в средствах их тестирования. В настоящее время используются сотни различных приборов, предназначенных для этого. Правильное использование оборудования увеличивает быстроту и точность локализации и корректировки проблемы. В данной главе представлены некоторые наиболее популярные типы тестовых инструментов, которые используются специалистами.
Общий обзор
Мастер, прежде всего, должен определить соотношение затрат и результатов при финансовых вложениях в контрольно-измерительное оборудование и помнить о том, что затраты могут не оправдать ожиданий. Ошибка в расчетах, по причине отсутствия качественного оборудования влечет за собой негативные эмоции от безрезультатной работы и коммерческие потери. Выбирая средства тестирования, необходимо принимать во внимание:
♦	надежность;
♦	единство измерений;
♦	международные стандарты;
♦	службы поверки;
♦	срок службы;
♦	специфику снятия измерений и их представления;
♦	точность и функциональные возможности контрольно-измерительных приборов.
Мультиметр, ампервольтомметр, мультиметр на полевых транзисторах
59
Перед использованием устройства обязательно прочитайте руководство по эксплуатации. Невнимание многих специалистов к этой процедуре приводит к удивительно большому числу неточных измерений, неправильному использованию прибора. По этой причине, как правило, многие его возможности остаются плохо изучены мастером. Не забывайте также о специализированной литературе, которая дает расширенную информацию о способах применения контрольно-измерительной аппаратуры и правилах ее использования.
Мультиметр, ампервольтомметр, мультиметр на полевых транзисторах, цифровые универсальные измерительные приборы
В течение многих лет вольтоммиллиамперметр (ампервольтомметр) был очень популярным переносным прибором (рис. 2.1).
Рис. 2.1. Ампервольтомметр
Этот аналоговый прибор идеален для измерений меняющихся величин, что является сложной задачей для цифровых приборов. Многие специалисты по поиску неисправностей, особенно работающие в области промышленной электрики, предпочитают наблюдать движения стрелки такого прибора, а не «бегающие» цифровые показания. В современные ампервольтомметры встроены схемы защиты прибора на основе предохранителей и диодов.
Одним из недостатков вольтомметров является то, что импеданс прибора при определенных условиях может дополнительно нагрузить схему и повлиять на измерения напряжения. Поэтому результаты иногда бывают неточны. Минимальная погрешность, как правило, не влияет на итоговые показатели оборудования промышленной электрики, но в значительной степени определяет диагностику электронных схем.
ГЛАВА 2. Контрольно-измерительные приборы для электронных устройств
Мультиметр на полевых транзисторах не создает дополнительную нагрузку за счет своего высокого входного импеданса и наличия стабилизированного источника питания. Этот измерительный прибор представляет собой переносное многофункциональное устройство, которое используется для технического обслуживания аппаратуры в самых разных областях.
Цифровой мультиметр являемся, наверное, самым популярным среди специалистов, чья деятельность требует очень высокой точности, например, в лабораторных условиях и при работе с цифровой техникой (рис. 2.2).
Рис. 2.2. Цифровой мультиметр с двойным дисплеем
Этот прибор использует схемы, которые формируют показания в цифровом виде с помощью светодиодных знакосинтезирующих индикаторов. Более сложные устройства такого типа используют графические экраны, формирующие изображения подобно осциллографу.
Высокоэффективный цифровой мультиметр снабжен многофункциональным флуоресцентным двойным дисплеем на 5 разрядов с возможностью выбора диапазонов измерений и точности. Например, пользователь может наблюдать два параметра сигнала в одной точке, снимая показания последовательно и одновременно. Это позволяет специалисту повысить гибкость оценки ситуации в применениях, которые требуют двух раздельных измерений одного и того же сигнала. Цифровой мультиметр обычно выполняется в виде переносного прибора со стандартными заменяемыми батареями. Некоторые устройства имеют интерфейс связи с персональным компьютером для автоматической записи результатов работы. Все эти преимущества, а также высокая точность делают этот контрольно-измерительный прибор очень популярным при проверке цифрового оборудования в стационарных условиях.
Осциллограф
В самом упрощенном виде осциллограф представляет собой вольтметр с электронно-лучевой трубкой. Однако у новичка этот прибор, со всеми его органами
Осциллограф
61
управления и видеоэкраном, вызывает одновременно восхищение и смущение. Осциллограф может быть одним из наиболее ценных типов оборудования при поиске неисправностей.
Основным преимуществом данного устройства является то, что оно предоставляет изображение формы измеряемого сигнала. Большинство осциллографов используют вертикальное и горизонтальное электростатическое отклонение луча электронной пушки с помощью двух пар вертикальных и горизонтальных пластин.
Хотя осциллограф широко используется для определения амплитуды напряжения, с его помощью можно измерять частоту, период, наблюдать фронты волновых сигналов, фазовый угол и частотные характеристики (рис. 2.3).
Рис. 2.3. Осциллограф
Основные органы управления осциллографом и их функции.
1.	Интенсивность - управление яркостью электронного луча.
2.	Фокус - регулировка ширины луча.
3.	Управление по вертикали - управление положением электронного луча по вертикали.
4.	Управление по горизонтали - управление положением электронного луча по горизонтали.
5.	Усиление по вертикали - регулирует высоту представления формы сигнала.
6.	Усиление по горизонтали - регулирует ширину представления формы сигнала.
7.	Управление разверткой - регулирует частоту генератора горизонтальной развертки.
8.	Селектор синхронизации - позволяет выбрать внешнюю или внутреннюю синхронизацию.
9.	Регулировка по оси Z - изменяет модуляцию следа сигнала.
10.	Шкала калибровки - предоставляет шкалу для измерений колебаний напряжения.
Настройка осциллографа обычно выполняется следующим образом:
62
ГЛАВА 2. Контрольно-измерительные приборы для электронных устройств
1.	Поставьте регуляторы интенсивности, фокуса и синхронизации на минимум.
2.	Установите регуляторы по вертикали и горизонтали в среднее положение.
3.	Включите осциллограф и установите регулятор интенсивности на минимальную яркость.
4.	Дайте осциллографу нагреться в течение 1-2 мин и регулятором фокуса установите контрастность.
5.	Установите сигнал в центр с помощью соответствующих регуляторов.
6.	Подключите источник переменного тока 6,3 В к входу по вертикали для калибровки.
7.	Поскольку напряжение 6,3 В является среднеквадратичным значением амплитуды синусоиды 9 В (или двойной амплитуды 18В), установите усиление по вертикали на диапазон 1,8 делений (рис. 2.4).
Рис. 2.4. Откалиброванный экран осциллографа
8.	Настройте синхронизацию, чтобы появилась статическая картинка трех периодов синусоидальной кривой.
9.	Теперь осциллограф настроен и откалиброван.
Каждое деление отныне соответствует 10 В. Для измерений других напряжений можно использовать аттенюатор, который позволяет умножить цену деления на 0,1, 1,10 и т.д.
С помощью внутреннего калибратора, можно настроить осциллограф на цену деления 1 В.
Более сложные измерительные приборы имеют встроенные калибраторы, отдельные и независимые средства работы с запуском, средства поиска луча.
Обычно, наряду с осциллографом, используются три основных пробника:
1.	С низкой емкостью.
2.	С детектором (радиочастотный).
3.	С делителем напряжения.
Пробник с низкой емкостью обычно используется для измерения в схемах с высокой частотой или высоким импедансом. При использовании этого пробника уменьшается нагрузочный эффект, что повышает точность измерений.
Пробник с детектором (радиочастотный) нередко используется для измерения радиочастотных сигналов, когда до его демонстрации на осциллографе сигнал сначала необходимо обнаружить.
Специальное контрольно-измерительное оборудование
63
Пробник с делителем напряжения используется, когда измеряемое напряжение больше максимально допустимого, и его необходимо уменьшить. Обычный коэффициент деления 10:1 или 100:1.
Выбирая осциллограф, необходимо учитывать: полосу пропускания, которая может изменяться от 10 МГц (мегагерц) до более чем 100 МГц, время нарастания сигнала, запуск и другие специфические условия. Могут быть очень серьезные различия при измерениях формы сигнала между двумя осциллографами, особенно при измерениях параметров цифровых импульсов.
Например, для работы с автомобильной техникой вполне достаточно иметь осциллограф с полосой пропускания 10 МГц, а для настройки видеоаппаратуры и промышленных программируемых устройств потребуется более высокочастотный прибор.
Важны также различия между аналоговым и цифровым осциллографом. Первый обычно стоит дешевле и лучше приспособлен для измерений аналоговых и высокочастотных сигналов, в то время как второй используется для специальных измерений в цифровых системах с накоплением информации. Современные технологии предлагают сейчас аналого-цифровые приборы, которые совмещают цифровую запись с традиционными для аналоговых измерителей органами управления.
Другие специальные применения требуют возможностей записи формы сигнала. Типичным примером является аппаратура электромиографии, которая используется в биомедицинской диагностике. Это устройство использует встроенный осциллограф для измерения электрических импульсов и скорости нервной проводимости при стимуляции мышц и обеспечении чувствительности. Говоря простым языком, электроды регистрируют активность зарядов, перемещающихся от одной точки тела к другой, и мышечную или нервную активность за определенный период времени. Для пользователя важно, чтобы он мог наблюдать больше одного сигнала, наблюдать сигнал в статике, сразу получить твердую копию на принтере или сохранить его форму для сравнения результатов. Мастер по поиску неисправностей может использовать специальные возможности запуска, например ждущую развертку или увеличение времени нарастания импульса.
Специальное контрольно-измерительное оборудование
В настоящее время существуют сотни приборов самого разного назначения. Вот некоторые из наиболее востребованных:
♦	тестер транзисторов;
♦	тестер конденсаторов;
♦	частотомер;
♦	генератор сигналов;
64
ГЛАВА 2. Контрольно-измерительные приборы для электронных устройств
♦	мегомметр;
♦	тестер напряжения;
♦	токоизмерительные клещи;
♦	неоновый тестер напряжения;
♦	тестовая лампа;
♦	цифровой логический импульсный генератор;
♦	цифровой логический пробник;
♦	прибор для проверки обмоток;
♦	оптический рефлектометр наблюдения за формой;
♦	измеритель напряженности поля;
♦	сетевой анализатор;
♦	набор для поиска неисправностей логических устройств.
Рис. 2.5. Тестер транзисторов
Тестеры транзисторов представляют собой очень точные приборы контроля исправности диодов и транзисторов. Они также могут проверить характеристики этих компонентов, как в схеме так и вне ее, позволяют измерять ток утечки и коэффициент усиления по току транзисторов и автоматически идентифицировать эмиттер, коллектор и базу (рис. 2.5).
Эти устройства контроля часто являются многоцелевыми приборами со звуковой и визуальной индикацией. Когда транзистор находится вне схемы, можно измерить ток утечки. Для этих приборов используются гибкие пробники с зажимами и штыревыми контактами, обеспечивающими быстрые и удобные измерения. Их можно также легко использовать при работе с транзисторами, установленными на печатные платы.
Тестеры конденсаторов проверяют качество элементов электрической цепи, как в схеме, так и вне ее, что позволяет ускорить поиск неисправностей. Эти приборы определяют характеристики неизвестных конденсаторов. Кроме того можно установить величину коэффициента мощности, утечку, обрыв; другие дефекты. Имейте в виду, что истинную емкость конденсатора можно правильно измерить только тогда, когда он находится вне схемы.
Тестеры - очень чувствительные приборы, и могут регистрировать даже очень маленькую утечку. Проверяя электролитические конденсаторы, в отличие от других типов, важно измерить их коэффициент мощности. Запомните, что нельзя касаться выводов тестера при включенном напряжении! Это может вызвать сильный удар током.
Частотомеры используются для измерения временных параметров сигналов в герцах (Гц) электронных устройств. Они нередко используются при регулировке частоты радиоприемников и передатчиков и порой необходимы при исследованиях и экспериментах. Обычно эти устройства обладают автоматическим запуском, высокостабильным таймером, входной защитой от превышения напряжения, и могут быть выполнены в виде переносных устройств. Большинство
Специальное контрольно-измерительное оборудование
65
частотомеров работают в диапазоне 10 Гц до 100 МГц и до 1,3 ГГц. Некоторые из них имеют наборы дополнительных приспособлений, например термостатированный кварцевый генератор для обеспечения температурной стабильности измерений, а также возможность записи и хранения результатов измерений (рис. 2.6).
Рис. 2.6. Частотомер
Существуют различные типы генераторов сигналов. Низкочастотные вырабатывают сигналы в звуковом диапазоне, а высокочастотные - в радиочастотном. Оба прибора генерируют синусоидальные или прямоугольные сигналы, имеют встроенные аттенюаторы и обеспечивают выход с малыми искажениями.
Генератор шума представляет собой небольшой ручной пробник, вырабатывающий широкополосные сигналы, который удобен при налаживании радиоприемников. Он посылает сигналы в широком диапазоне (от 1 кГц до 30 МГц) звуковых и радиочастот.
Генератор меток вырабатывает немодулированный сигнал и используется для идентификации частот на амплитудно-частотной характеристике при настройке телевизионных устройств.
При настройке телеприемников также используется генератор качающейся частоты. Он вырабатывает частотно-модулированный сигнал в желаемом диапазоне.
Генератор качающейся частоты и генератор меток обычно конструктивно выполняется в виде единого устройства.
Телевизионные генераторы, как правило, имеют большую ширину полосы качания, чем у стереоприемников с частотной модуляцией. В этих приборах нередко предусмотрен и генератор цветового сигнала, который формирует калибровочный цветовой сигнал для сведения лучей телевизора. Они обеспечивают образцовые сигналы: чистого растра, точек, сетчатого поля, цветовых полос, горизонтальных и вертикальных линий.
Прибор, который используется при настройке и ремонте телевизионного и стереоприемного оборудования и обеспечивает режим модуляции нескольких каналов, называется генератор сигнала ТВ/стерео (рис. 2.7).
Используя генераторы сигналов, необходимо предпринять некоторые меры предосторожности.
66
ГЛАВА 2. Контрольно-измерительные приборы для электронных устройств
Рис. 2.7. Генератор ТВ/стерео сигналов
Прибор должен быть надлежащим образом заземлен, то же касается и других контрольно-измерительных устройств - осциллографа и мультиметра, иначе это может обернуться неточными измерениями. Меняйте положение точки заземления каждый раз, когда вы перемещаете пробник в другую точку при отслеживании видео, радиочастотных или импульсных сигналов. Помните, что выходной импеданс генератора должен быть согласован со схемой. В случае ошибки может уменьшиться коэффициент усиления. Существуют специальные согласующие щупы и пробники с переменным импедансом. Также очень удобно пользоваться руководствами изготовителей по регулировке амплитуды выходного сигнала, калибровке, коэффициентами линейности, искажений. Наконец, помните, что не следует начинать перенастраивать схему до того, как вы полностью провели поиск неисправностей устройства. Исправление схемы может решить многие проблемы настройки.
Мегомметр служит для измерения сопротивления изоляции. Он используется для проверки электрического сопротивления изолятора, показывая сопротивление в соответствии с подаваемым напряжением.
Напряжение мегомметра создается с помощью встроенного электромеханического генератора с ручным приводом, батареи или источника питания.
Есть разные типы мегомметров - карманные и малогабаритные с бесколлек-торными генераторами и рукояткой. Качество изолятора с точки зрения сопротивления определяется его способностью выдерживать напряжение без утечки, больше расчетной. Пробой изоляции и ухудшение ее свойств могут быть вызваны различными факторами: колебаниями температуры, коррозией, водой, вибрацией, загрязнениями и износом.
Мегомметр можно использовать для такого оборудования как двигатели, генераторы, трансформаторы, кабели, провода, переключатели, терминалы. Такие приборы также выполняются в цифровом и аналоговом варианте. Встречаются и комбинированные. Испытательное напряжение обычно составляет 50-5000 В постоянного тока (рис. 2.8).
Настоящие специалисты по ремонту промышленного оборудования не работают без индикатора напряжения, этого удобного и грубого прибора, который обычно используется для измерений в диапазоне 110-600 В переменного тока (рис. 2.9).
Он является быстрым и надежным инструментом проверки напряжения в линиях и распределительных щитах. Для специалиста, работающего в сфере
Специальное контрольно-измерительное оборудование
67
Рис. 2.8. Мегомметр	Рис. 2.9. Индикатор напряжения
промышленности, точность не важна. Обычно его интересует, работает ли цепь, и какова приблизительная величина напряжения: 120, 240, 480 или 600 В.
Специальный тип индикатора напряжения, который называется высоковольтный пробник, рассчитан на 40 кВ постоянного тока. Он используется при работе с рентгеновскими аппаратами и электронно-лучевыми трубками телевизоров и мониторов компьютеров.
Высоковольтные измерители для линий передачи представляют собой специализированные вольтметры, которые используются для проверки трансформаторов и линий высокого напряжения. Эти приборы часто называют «штангой для работы под напряжением» за их длинные ручки.
Они содержат высоковольтные резисторы, покрытые эпоксидной смолой, который ограничивают ток при полном напряжении. Эти устройства могут измерять напряжения более 145 кВ.
Аксессуары включают различные изолированные и неизолированные пробники проходной изоляции, проверочные тестеры, удлинительные штанги, графопостроители и фазирующее оборудование.
Токоизмерителъные клещи подобны индикатору напряжения, но они используются для измерения х переменного и постоянного тока промышленного назначения (рис. 2.10). Этот прибор содержит зажимы так называемого «трансформатора тока», которые кольцеобразно охватывают проводник, не разрывая цепь. Эти переносные устройства, являющиеся достаточно грубыми, часто используются с аналоговыми вольтомметрами и цифровыми мультиметрами. Они обычно работают с переменным током от 100 мА до 500 А. Как и в случае индикатора напряжения, основным преимуществом данного прибора является возможность быстрого и точного измерения в промышленных сетях.
Специализированные токоизмерительные клещи с большим крюком и зажимом используются в системах передачи высокого напряжения и могут проводить измерения на одной или нескольких линиях или шинах. Qhh предназначены для измерения токов свыше 2 кА. К числу дополнительного оборудования
68
ГЛАВА 2. Контрольно-измерительные приборы для электронныхустройств
Рис. 2.10. Токоизмерительные клещи
относятся удлинительные штанги, цифровые дисплеи, органы управления на основе регулируемых трансформаторов, конденсаторы, устройства фиксации прибора и записи измерений.
Неоновый индикатор представляет собой простой прибор для проверки наличия напряжения в цепи. Этот инструмент чаще всего используется при поиске неисправностей бытовой проводки. Простой в обращении, легкий и дешевый прибор, снабженный неоновой лампой для индикации наличия, но не измерения напряжения (рис. 2.11).
Рис. 2.11. Неоновый индикатор напряжения
Тестовая лампа - это простой прибор, который используется для проверки целостности цепи. Иногда его предпочитают омметру, поскольку лампа позволяет смотреть на измеряемую цепь и на контакты прибора, а не на шкалу омметра. Типичным применением является ремонт электродвигателей и генераторов в небольших устройствах. На рис. 2.12. показан пример конструкции простой тестовой лампы.
Логический импульсный генератор вырабатывает одиночный положительный или отрицательный импульс при нажатии кнопки запуска. Если удерживать кнопку, вырабатывается последовательность импульсов. Другие типы подобных
Специальное контрольно-измерительное оборудование
69
Рис. 2.12. Простая тестовая лампа
Рис. 2.13. Ручной цифровой логический пробник
устройств имеют дополнительные возможности: автоматический выбор полярности, изменение параметров импульсов (рис. 2.13).
Логический пробник используется для диагностики состояния (высокий или низкий уровень логического сигнала) за счет сравнения его с пороговыми уровнями для данного типа устройств, дает возможность быстрого тестирования и устраняет необходимость в дорогих, громоздких осциллографах или вольтметрах. Существует много различных типов логических пробников, которые имеют такие опции, как память, защита от перегрузки, высокоскоростное тестирование. На рис. 2.14 показана комбинация мультиметра и логического тестового прибора.
Рис. 2.14. Индикатор напряжения
Этот прибор включает цифровой мультиметр с восемью функциями и большим цифровым светодиодным дисплеем, полную индикацию и автоматический или ручной выбор режимов работы. Логические мониторы аналогичны пробникам подобного типа, но позволяют при необходимости подключиться к выводам микросхем, контрольным точкам или шине контроля.
70
ГЛАВА 2. Контрольно-измерительные приборы для электронныхустройств
Два обычных монитора - 16-канальный и 40-канальный. Эти приборы имеют разнообразные задачи при поиске неисправностей микропроцессоров и системах управления технологическими процессами.
Прибор для проверки обмоток бывает двух типов - внутренний и внешний - и используется при проверке ротора и статора электродвигателей, генераторов на короткое замыкание. Состоит из катушки со стальным сердечником. При подаче в катушку переменного тока возникает магнитный поток между прибором и исследуемым устройством, заставляющий вибрировать сердечник, который издает при этом рычащий звук.
Для тестирования устройств вместе с прибором для проверки обмоток используется узкая полоска стали (зонд), подобная ножовочному полотну. Она размещается параллельно с исследуемым устройством и прибором. Если в устройстве произошло короткое замыкание обмоток, непосредственно над закороченной катушкой образуется сильное магнитное поле, заставляя зонд угрожающе вибрировать и тянуться вниз. В шумном помещении часто вместе с прибором используется лампочка, которая светится ярче при коротком замыкании.
Некоторые приборы для проверки обмоток имеют дополнительные опции: встроенный амперметр или зонд, который служит для тестирования небольших неисправных катушек, обратных катушек или регуляторов коэффициента мощности (рис. 2.15).
Рис. 2.15. Образец внутреннего прибора для проверки обмоток
Прибор, который используется при поиске неисправностей и установке распределенных систем телевидения - это измеритель уровня сигнала (или измеритель напряженности поля). Этот прибор дает точные данные в диапазоне метровых (МВ), дециметровых (ДМВ) волн и имеет встроенный громкоговоритель. Он представляет собой вольтметр, настроенный на радиочастоты, со шкалой в микровольтах или децибелах. Прибор наиболее часто применяется с целью позиционирования антенн и настройки уровня сигналов. К числу других применений относятся измерения вносимых потерь, коэффициента усиления,
Специальнее контрольно-измерительное оборудование
71
сигнала промежуточных каналов, обратных потерь (коэффициента стоячей волны), уровня шума.
Оптический рефлектометр наблюдения за формой сигнала является узкоспециализированным прибором, используемым при проверке оптоволоконных сетей (рис. 2.16).
Рис. 2.16. Оптический рефлектометр
Его можно использовать при тестировании потери сигнала и нарушениях передачи в многомодовом оптоволокне. Некоторые устройства состоят одновременно из двух модулей с излучением двойной длины волны, что позволяет проводить оптическое тестирование с двойной длиной волны.
Например, прибор TFS 3031 Ranger 2 фирмы Tektronix Inc. имеет зону нечувствительности 3,5 м, регулируемый порог отражательной способности 15-60 дБ, внутреннюю память на 100 сигналов и возможность локализации конца оптоволокна на расстоянии более 175 км.
Рис. 2.17. Анализатор схем, спектра и формы волнового сигнала
72
ГЛАВА 2. Контрольно-измерительные приборы для электронных устройств
Анализатор схем, спектра и формы волнового сигналапред^ъъляеч? собой сложный модуль, используемый в медицинских исследованиях речи, гидроакустике, сонарах, анализе машин с вращательным движением, структурном анализе. Этот прибор оцифровывает сигнал при считывании формы волны с точностью до 3,5 млн. точек и анализирует спектр в динамическом диапазоне до 90 дБ (рис. 2.17).
Диагностический комплекс для поиска неисправностей логических устройств позволяет проводить статическое, динамическое и многоконтактное тестирование ИС. Такие приборы могут быть очень удобными и эффективными при локализации дефектов (рис. 2.18).
Рис. 2.18. Набор для поиска неисправностей цифровых логических устройств
Другой тип логического анализатора показан на рис. 2.19. Это сверхскоростной прибор для решения сложных системных проблем.
Рис. 2.19. Логический анализатор
Использование тестовых пробников
73
Он позволяет стробировать любые входные сигналы с частотой 2 ГГц, обрабатывает информацию в реальном масштабе времени и запускается без потерь важных данных о переменных характеристиках сигнала. Эти приборы совместимы со стандартными устройствами plug-and-play, полностью совместимы при переносе с одного главного компьютера на другой, поддерживают многие типы микропроцессоров и обеспечивают одновременный анализ состояния и временных характеристик, используя те же пробники.
Существует несколько типов калибровочных приборов, используемых при поиске неисправностей и техническом обслуживании.
Многофункциональный калибратор измеряет температуру, давление, напряжение, ток и сопротивление. Он снабжен:
♦	двухстрочным алфавитно-цифровым жидкокристаллическим дисплеем с подсветкой, который способен демонстрировать входные и выходные значения измеряемых величин;
♦	памятью для хранения программ эмуляции;
♦	цифровым выходом;
Рис. 2.20.
Многофункциональный калибратор
♦ программно-аппаратным интерфейсом RSA 232 (рис. 2.20).
Использование тестовых пробников
Все контрольно-измерительные приборы поставляются с тем или иным типом пробника или щупа. Однако очень важно, чтобы специалист сделал правильный выбор в соответствии с устройством, с которым он намеревается работать.
Дешевые пробники могут состоять только из одного провода с контактом или простой схемы RC:
♦	пробники с аттенюатором 10:1 наиболее распространены;
♦	активные пробники напряжения имеют более сложное внутреннее устройство, например каскады на полевых транзисторах для измерения в схемах, которые требуют минимальной нагрузки, вызванной подключением прибора; специальных уровней логического напряжения и высокоскоростного анализа в цифровых цепях;
♦	пассивные пробники напряжения, не содержащие активные элементы, применяются в аналоговых и цифровых устройствах общего назначения;
♦	осциллографы используют множество тестовых пробников.
В других случаях могут использоваться пробники со средствами переключения диапазонов, автоматической компенсацией показаний электронно-лучевой трубки, демодуляторами, низкой емкостью, высоким напряжением и импедансом.
74
ГЛАВА 2. Контрольно-измерительные приборы для электронных устройств
Каждый специалист должен иметь набор проводов с зажимами, защелок, зажимов типа «крокодил» для временных соединений и перемычек при работе с неисправными компонентами. К числу других приспособлений относятся миниатюрные бокорезы, плоскогубцы, торцевые гаечные ключи для шестигранных соединений, ключи для шпонок, увеличительные стекла и пинцеты.
Вопросы для самоконтроля
Выберите правильный ответ:
1.	Какой измерительный прибор имеет интерфейс с персональным компьютером и обычно используется для очень точных измерений в лабораторных условиях:
a)	TVM;
б)	ампервольтомметр;
в)	VTVM;
г)	ампервольтомметр на полевых транзисторах;
д)	цифровой мультиметр.
2.	Осциллограф широко используется для измерения:
а)	напряжения в системах дистанционного управления;
б)	среднего напряжения;
в)	эффективного напряжения;
г)	размаха напряжения;
д)	ничего из перечисленного.
3.	Регулятор, который настраивает частоту горизонтальной развертки осциллографа:
а)	усиление по горизонтали;
б)	регулятор по оси Z;
в)	аттенюатор;
г)	выбор синхронизации;
д)	управление разверткой.
4.	Необходимый пробник, который обычно используется с осциллографом при измерении в цепях с высокой частотой или высоким импедансом: а) пробник с детектором;
б)	пробник с малой емкостью;
в)	делитель напряжения;
г)	пробник с генератором шума;
д)	ничего из перечисленного.
5.	Регулировка высоты сигнала на экране осциллографа производится с помощью:
а)	управления разверткой;
б)	регулятора по оси Z;
в)	выбора синхронизации;
г)	усиления по горизонтали;
д)	усиления по вертикали.
Вопросы для самоконтроля
75
6.	Для проверки ротора на короткое замыкание часто используется:
а)	ампервольтомметр;
б)	VTVM;
в)	мегомметр;
г)	устройство проверки обмоток;
д)	ничего из перечисленного.
7.	Измерительный прибор для проверки сопротивления изоляции называется:
а)	тестер транзисторов;
б)	индикатор напряжения;
в)	магнитометр;
г)	мегомметр;
д)	ничего из перечисленного.
8.	Небольшой ручной пробник с генератором, который используется при отслеживании сигналов приемников, называется:
а)	генератор звуковой частоты;
б)	генератор радиочастоты;
в)	генератор развертки;
г)	генератор меток;
д)	генератор шума.
9.	Дополнительный пробник осциллографа, который используется для обнаружения сигнала, называется:
а)	делитель напряжения;
б)	пробник с низкой емкостью;
в)	пробник звуковой частоты;
г)	направленный пробник;
д)	пробник с детектором.
10.	Регулятор осциллографа, который позволяет использовать внешнюю или внутреннюю синхронизацию, это:
а)	управление разверткой;
б)	регулировка по оси Z;
в)	фокус;
г)	выбор синхронизации;
д)	интенсивность.
Вопросы и проблемы
1.	Объясните разницу между ампервольтметром и прибором на основе полевых транзисторов.
2.	Что такое цифровой мультиметр?
3.	Расскажите о процедуре настройки осциллографа перед работой.
4.	Объясните, как калибровать осциллограф.
5.	Что такое пробник с низкой емкостью?
6.	Что такое пробник с делителем напряжения?
7.	Что такое пробник с демодуляцией или радиочастотный пробник?
ГЛАВА 2. Контрольно-измерительные приборы для электронных устройств
8.	Расскажите, для чего используется мегомметр.
9.	Где используется генератор меток?
10.	Что такое неоновый индикатор напряжения?
11.	Расскажите о назначении оптического рефлектометра для наблюдения за формой сигнала.
12.	Какая разница между логическим пробником и цифровым логическим импульсным пробником?
13.	Расскажите о назначении анализатора схемы, спектра и формы сигналов.
14.	Расскажите о функциях генератора ТВ/стереосигналов.
15.	Для тестирования каких типов оборудования обычно используется высоковольтный пробник?
16.	Расскажите о работе устройства проверки обмоток.
17.	Расскажите о характеристиках амперметра для высоковольтных линий передачи.
18.	Какие специальные требования предъявляет к осциллографу электромиограф?
19.	Расскажите о применении и типах высоковольтных вольтметров.
20.	Расскажите о типичных применениях тестовых ламп.
Сервисное обслуживание двигателей и генераторов
Электрические двигатели принадлежат к числу наиболее широко используемых в бытовых, коммерческих и промышленных областях. Понимание основ их обслуживания дает возможность заниматься сервисом и другого оборудования.
После появления высоких технологий потребность в электрических двигателях возросла. Были разработаны новые конструкции энергосиловых машин и расширились их возможности.
Электрические генераторы также используются в различных направлениях: от оборудования до автомобильной промышленности. Хотя генератор во многом похож на двигатель, каждый из них имеет специфические особенности и задачи.
В этой главе дается обзор базовых принципов работы двигателей и генераторов, а также методы поиска неисправностей и ремонта.
Основные сведения
Конструкция и теория работы электродвигателей во многом повторяет методы подхода и строение генераторов.
Двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую (рис. 3.1). Генератор делает прямо противоположное. Простой генератор постоянного тока можно превратить в электродвигатель, подключив аккумуляторную батарею к зажимам щеток.
Ток подается к якорю от батареи и превращает его в электромагнит. Якорь имеет «северный» и «южный» полюса, расположенные рядом с одноименными полюсами магнита статора. В результате якорь начинает вращаться, поскольку крайние точки отталкиваются друг от друга, как показано на рис. 3.2.
78
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
Рис. 3.1. Упрощенная конструкция электрического двигателя
Рис. 3.2. Вращательное действие упрощенного электродвигателя
Якорь продолжает вращаться, потому что коллектор постоянно меняет ориентацию его полюсов. Такой тип двигателя называется репульсионным. Для увеличения его эффективности на полюсах магнита и на якоре устанавливаются несколько катушек. Это повышает мощность двигателя и делает его работу более равномерной.
Типичный электродвигатель состоит из якоря, обмотки возбуждения, торцевых пластин, подшипников, корпуса, щетки, выключателя и основания (рис. 3.3). Большинство из них, несмотря на различия по конструкции и характеру работы, содержат статор (внешняя часть из электрических обмоток двигателя), ротор и торцевые крышки (или торцевые пластины).
Рис. 3.3. Основные детали электродвигателя
Типы двигателей
79
Статор обычно изготавливается из множества стальных пластин. Этот набор с оксидным покрытием сваривается в оболочке статора, что уменьшает вихревые токи и нагрев сердечника во время работы двигателя.
Проволочные обмотки состоят из большого количества витков. Важно, чтобы каждая катушка была тщательно собрана, иначе вся обмотка может оказаться закороченной, мотор перегреется и прекратит работу.
Фазные роторы постоянного тока и индукционные роторы переменного тока. Фазный ротор постоянного тока имеет коллектор и используется также для универсальных двигателей переменного тока. Как и статор, имеет многослойную металлическую структуру с катушками из провода и лаковой изоляцией. Индукционные роторы не имеют проволочных обмоток или коллектора.
Ротор переменного тока состоит из нескольких металлических слоев с алюминиевыми, медными и/или стальными стержнями. Эта конструкция обеспечивает индуктивность с малым выделением тепла. Иногда для уменьшения нагрева на валу ротора устанавливаются лопасти, играющие роль вентиляторов. Роторы собираются так, чтобы пазы располагались под углом для обеспечения более стабильной работы. Вращающаяся часть двигателя также балансируется с помощью грузов, прикрепляемых к лопастям вентилятора или валу.
Типы двигателей
Электродвигатели работают, в основном, по принципу отталкивания или индукции. Энергосиловые машины репульсионного типа, как вы уже знаете, используют отталкивание одинаковых магнитных полюсов. Магнитное поле полюса якоря противодействует полю неподвижных обмоток статора и заставляет якорь вращаться. Коллектор постоянно меняет полярность обмоток якоря, поэтому он не останавливается. Все двигатели постоянного тока и некоторые переменного работают по принципу отталкивания. Для этого им необходим якорь, коллектор и набор щеток.
Индукционные двигатели, как вы могли догадаться, работают по принципу электромагнитной индукции и почти все на переменном токе. Ротор индукционных двигателей, похожий на беличье колесо, обычно состоит из многослойного стального цилиндра и медных стержней, вставленных в прорези. Его называют короткозамкнутым ротором. Когда на обмотки статора подается переменный ток, в роторе вследствие явления электромагнитной индукции также возникает ток, который создает магнитное поле, чья полярность противоположна полярности поля обмоток статора. Ротор не начнет вращаться сам по себе, поэтому большинство однофазных двигателей требуют стартовой обмотки и выключателя. Трехфазные двигатели не требуют выключателя для запуска поскольку каждая фаза смещена на 120°. Кроме того, индукционные двигатели не нуждаются для работы в якоре, коллекторе или наборе щеток.
Существует много типов и классов электродвигателей, каждый из которых обладает собственными характеристиками и возможностями. Современное развитие технологий увеличило производство двигателей с различными возможностями. Вот некоторые из наиболее распространенных машин:
80
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
♦	с расщепленными фазами;
♦	конденсаторные;
♦	с расщепленными полюсами;
♦	репульсионные;
. ♦ постоянного тока;
♦	синхронные;
♦	универсальные;
♦	многофазные;
♦	редукторные;
♦	шаговые.
Двигатели с расщепленными фазами
Энергосиловая машина с расщепленными фазами представляет собой однофазный индукционный двигатель переменного тока, который обычно работает от сети 220 В, используя короткозамкнутый ротор (рис. 3.4). Работает по принципу индукции. Он устанавливается на многих приборах: моечных машинах, водяных насосах, рефрижераторах, вентиляторах. Мощность двигателя обычно находится в ряду от 0,05 до 0,5 лошадиной силы.
Рис. 3.4. Двигатель с расщепленными фазами
Двигатель с расщепленными фазами имеет две обмотки возбуждения - рабочую и пусковую. Он получил такое название, потому что пусковая обмотка сдвинута на 90° относительно основной рабочей (рис. 3.5).
Пусковая или вспомогательная обмотка изготавливается из качественного изолированного медного провода и отвечает за запуск двигателя. Она обычно включена в схему только в течение долей секунды. Двигатель набирает примерно 75% скорости, после чего центробежный выключатель отсоединяет пусковую обмотку от схемы. Дальнейшую работу ведет основная обмотка (рис. 3.6).
Типы двигателей
81
Рис. 3.5. Пусковая и рабочая обмотки двигателя с расщепленными фазами
Неподвижная часть центробежного выключателя состоит из двух контактов, которые подключают и отключают пусковую обмотку (рис.3.7).
Рис. 3.6. Сборка центробежного механизма центробежного выключателя
Рис. 3.7. Неподвижная часть центробежного выключателя

Конденсаторные двигатели
Конденсаторные двигатели - однофазные машины переменного тока индукционного типа. По конструкции они почти идентичны двигателям с расщепленными фазами, но содержат один или более конденсаторов. Обычно их мощность находится в диапазоне от нескольких долёй до 20 лошадиных сил (рис. 3.8).
Конденсатор представляет собой устройство, хранящее электрический заряд, а также проводящее переменный ток. Его главная характеристика - емкость, которая измеряется в фарадах (Ф), микрофарадах (мкФ), нанофарадах (нФ) и пикофарадах (пФ). Наиболее распространенные типы конденсаторов: бумажные и электролитические. Есть три основных типа конденсаторных
82
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
Рис. 3.8. Конденсаторный двигатель
двигателей; с конденсаторным запуском, с конденсаторным запуском и действием, с отдельными конденсаторами для пуска и рабочего режима.
Двигатели с конденсаторным запуском используют элемент цепи, который подключается последовательно с пусковой обмоткой (рис.3.9). Когда машина включается, конденсатор заставляет ток из пусковой обмотки поступать в рабочую. Этот эффект вызывает ток в роторе, и он начинает вращаться.
Рис. 3.9. Внутренняя схема двигателя с конденсаторным запуском
В бесшумном, стабильно работающем двигателе с конденсаторным запуском и действием элемент цепи и пусковая обмотка остаются все время в составе схемы. Он часто используется в вентиляторах, рефрижераторах, кондиционерах, где необходим минимальный уровень шума.
Типы двигателей
83
Двигатель с отдельными конденсаторами для пуска и рабочего режима также очень тихо работает (рис. 3.10). Он использует два элемента электрической цепи различной емкости. Для пуска служит конденсатор большой емкости, а конденсатор с меньшей емкостью заменяет его после начала работы двигателя. Кроме того, конденсаторные двигатели такого типа часто используются в компрессорах, где нужен высокий вращающий момент при запуске и более чем одна скорость вращения.
Рис. 3.10. Внутренняя схема двигателя с отдельными конденсаторами для запуска и рабочего режима
Двигатели с расщепленными полюсами
Двигатель с расщепленными полюсами является, наверное, самым дешевым и обычно его мощность находится в диапазоне от 0,004 до 0,25 лошадиных сил (рис. 3.11).
Рис. 3.11. Двигатель с расщепленными полюсами
84
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
У двигателя с расщепленными полюсами очень малый стартовый вращающий момент. Он используется в таких приборах, как вентиляторы и фены, где наиболее важным является низкая стоимость и минимальные затраты на обслуживание.
Это простой однофазный индукционный двигатель с короткозамкнутым ротором, почти не требующий технического обслуживания. Его полюса выступают из многослойного цилиндра, поэтому их часто называют явно выраженными. Машины не используют пусковую обмотку, подобную самым простым однофазным индукционным двигателям. Они имеют короткозамкнутый виток из толстого медного провода, который выполняет роль пусковой обмотки (рис. 3.12).
Рис. 3.12. Экранирующее кольцо двигателя с расщепленными полюсами
Когда ток подается на двигатель, короткозамкнутый виток, называемый также экранирующим кольцом, создает магнитное поле, которое сдвинуто по фазе относительно поля обмотки возбуждения. Магнитное поле вызывает ток в роторе, и тот начинает вращаться. После того, как достигнута необходимая скорость вращения, вступает в действие обмотка возбуждения и продолжает вращаться (рис. 3.13).
Рис. 3.13. Рабочая и пусковая обмотки двигателя с расщепленными полюсами
Типы двигателей
85
Двигатели репульсионного типа
Можно выделить два основных типа двигателей:
♦	репульсионные;
♦	с репульсионным пуском и индукционным действием.
Как вы, наверное, помните, репульсионный двигатель имеет якорь, коллектор и набор щеток. Работает по принципу отталкивания одноименных полюсов. Он очень похож на коллекторные двигатели постоянного тока и его мощность находится в пределах 0,5-10 лошадиных сил, имеет отличный стартовый вращающий момент и регулируемую скорость. Он обычно используется в компрессорах, кондиционерах, насосах. Скорость репульсионного двигателя можно менять за счет смещения держателя щеток. Это приводит к тому, что щетки сдвигаются ближе или дальше по отношению друг к другу. Таким образом можно управлять скоростью двигателя. Машины запускаются по принципу репуль-сии. Когда ротор начинает вращаться, он продолжает работать как индукционный двигатель. Щетки и коллектор используются только во время запуска. Когда двигатель стартовал, удаление щеток не повлияет на характеристики его работы. В других типах этих двигателей с помощью центробежного выключателя производится отвод щеток от поверхности коллектора после запуска. Эти машины имеют более сложную конструкцию, однако уменьшают износ щеток.
Двигатели постоянного тока
Двигатели постоянного тока имеют мощности в диапазоне от долей до нескольких тысяч лошадиных сил. Они широко используются в подъемниках, где необходим пусковой вращающий момент и регулирование скорости.
Существуют три типа двигателей постоянного тока: с последовательным, параллельным и смешанным возбуждением. Основная разница между ними заключается в соединениях между возбуждающей обмоткой и якорем.
В двигателях с последовательным возбуждением якорь и обмотки соединены последовательно, поэтому он может запускаться даже при очень большой нагрузке, изменяя скорость в соответствии с величиной нагрузки. Данный тип устройств обычно используется в стартерах автомобилей, кранов и подъемных устройств, где при малой скорости необходим очень большой вращающий момент (рис. 3.14).
I----------------------------------о
Рис. 3.14. Упрощенная схема двигателя с последовательным возбуждением
В электродвигателе параллельного возбуждения якорь и возбуждающие обмотки соединены параллельно. Двигатель поддерживает постоянную скорость
86
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
при изменяющейся нагрузке, но его пусковой вращающий момент меньше, чем у энергосиловой машины с последовательным возбуждением (рис. 3.15). Такие двигатели обычно используются в насосах и подъемниках, где необходима постоянная скорость при изменяющейся нагрузке.
Рис. 3.15. Упрощенная схема двигателя с параллельным возбуждением
Якорь и обмотки в двигателях со смешанным возбуждением или последовательно-параллельных двигателях соединены в виде комбинированной схемы последовательно и параллельно (рис. 3.16).
Рис. 3.16. Упрощенная схема двигателя со смешанным возбуждением
Как и следует ожидать, двигатели со смешанным возбуждением имеют свойства двигателей с последовательным и параллельным возбуждением. Они обладают неплохим вращающим моментом и хорошей регулировкой скорости. Используются на предприятиях в приводах крупногабаритного оборудования, где необходим хороший пусковой и опрокидывающий момент.
Рис. 3.17. Упрощенная схема универсального двигателя с последовательным возбуждением
Типы двигателей
87
Универсальные электродвигатели
Универсальные двигатели могут работать на постоянном или на переменном токе. Обычно они имеют мощность в доли л.с. Универсальный двигатель представляет собой устройство с последовательным возбуждением. У него очень хороший пусковой вращающий момент и переменная скорость. Такие двигатели, в основном, используются в пылесосах, швейных машинах, бытовых миксерах, вентиляторах, фенах и другой бытовой технике (рис. 3.17).
Многополюсные двигатели
Наиболее популярный сегодня многополюсный двигатель - трехфазный индукционный переменного тока с мощностью от долей л.с. до нескольких тысяч л.с. (рис. 3.18). Большинство трехфазных двигателей используются в промышленности. Мощность таких устройств от - 10 до 100 л.с.
Рис. 3.18. Трехфазный двигатель
Трехфазные двигатели не требуют серьезного технического обслуживания и ремонта и имеют очень простую конструкцию: содержат несколько катушек, которые распределены между несколькими обмотками, называемыми фазами. Каждая фаза имеет одинаковое число катушек. Три группы катушек, или фазы, соединены звездой или треугольником (рис. 3.19).
Когда трехфазный ток подается на обмотки статора, внутри металлических стержней короткозамкнутой обмотки создается вращающееся магнитное поле, которое заставляет ротор вращаться. Трехфазный ток, продолжающий проходить через обмотки статора, смещенные относительно друг друга на 120°, поддерживает вращение ротора за счет индукции. Трехфазные двигатели имеют различный вращающий момент, скорость, величину и корпус. Способы их применения очень разнообразны. Обычно они используются в приводах промышленного оборудования.
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
Рис. 3.19. Упрощенная схема соединения фаз двигателя звездой и треугольником
Синхронные двигатели
Синхронные машины представляют собой индукционные двигатели, работающие с постоянной синхронной скоростью, которая определяется частотой источника питания и количеством полюсов. Они имеют самую разную форму, размер способы применения. Обладают мощностью от долей л.с. для малогабаритных часов и до 3000 л.с. для сталепрокатных станов.
Синхронные двигатели могут работать только на переменном токе. Их скорость постоянна и не меняется в некоторых пределах при увеличении/умень-шении нагрузки. Основной принцип работы заключается в том, что ротор с выступающими полюсами вращается вместе с магнитным полем. Ротор «сцепляется» с полем и остается в постоянном, непрерывном движении. Некоторые из них запускаются постоянным током. Возбуждение ротора создает определенные полюса, которые связаны с вращающимся магнитным полем. Часто такой тип двигателя снабжен небольшим генератором постоянного тока, который присоединен к валу и подает постоянный ток на ротор.
Редукторные двигатели
Это специализированные устройства, которые используются для получения пониженной скорости и большей мощности. Могут быть индукционными или репульсионными (рис. 3.20).
Типы двигателей
89
Рис. 3.20. Редукторный двигатель в разрезе
Редуктор исключает применение приводных цепей и ремней, позволяет развить больший момент по сравнению с моментом электродвигателя. Выбор того или иного типа определяется, в основном, скоростью и вращающим моментом, который при заданной нагрузке не может обеспечить двигатель с аналогичными массогабаритными показателями, а также требования к монтажу, нагрузке, торможению.
Три специальных типа редукторов - прямозубая, винтовая и червячная передача. Первая позволяет получить большую мощность, но при этом работа устройства сопровождается сильным звуковым эффектом. Винтовая передача менее шумная и обеспечивает почти постоянное движение. Червячная имеет минимальное звуковое сопровождение и высокий коэффициент передачи, хотя при этом наименее эффективна. Передачи изготавливаются из металлических и неметаллических материалов. Последние тише в работе, но выдерживают меньшие нагрузки.
Шаговый двигатель
Шаговый двигатель используется в таких устройствах с цифровым управлением перемещения, как принтеры, медицинское рентгеновское оборудование, фотонаборные машины, регуляторы управления производственным процессом (рис. 3.21).
Данные энергосиловые машины обеспечивают фиксированное и точное перемещение, а не непрерывное движение, производимое постоянно вращающимся двигателями. Работа шаговых двигателей основана на теории индукции. Вал вращается на один шаг при подаче очередного импульса управления. Полный цикл завершается, когда выполнены все шаги (рис. 3.22).
Привод шаговых двигателей обычно состоит из источника управляющих импульсов, которым обычно является компьютер, микропроцессор или электронная схема на дискретных элементах, и силового преобразователя. На него
90
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
Рис. 3.21. Шаговый двигатель постоянного тока
Красный
Последовательность переключения
Рис. 3.22. Последовательность переключения при выполнении четырех шагов
подается питание от источника постоянного тока. Преобразователь превращает цифровые импульсы в соответствующую последовательность импульсов переключения для шагового двигателя, который, в свою очередь, преобразует электрическую информацию в механическое перемещение для выполнения операций с нагрузкой (рис. 3.23).
Типы генераторов
91
Рис. 3.23. Преобразователь для превращения управляющих импульсов в последовательность переключения обмоток шагового двигателя
Специальные двигатели и их применение
К числу специальных относятся бесщеточный, линейный, с высоким пиковым усилием, вертикальный и горизонтальный двигатели и усовершенствованные электродвигатели специального назначения.
Например, фирма NetGain Technologies, LLC, использует усовершенствованный, обладающий высокой мощностью электродвигатель в электрическом гоночном автомобиле. Это двигатель постоянного тока работает при напряжении 33,6 В и токе до 2000 А, что позволяет развивать скорость 240 км/ч, и вращающий момент более 275 кг/м. Одной из наиболее быстроразвивающихся областей технологии электрических двигателей являются приводы и их электронные конвертеры. Эти системы обеспечивают комплексные и эффективные функции управления двигателями и используются в средствах передвижения, промышленности, бытовых приборах.
Например, в рамках программы развития силовой электроники и приводов электродвигателей Иллинойского технологического института ведутся исследования и разработки в области силовой электроники, приводов электродвигателей, с возможностью переключения сопротивления, приводов с регулируемой скоростью, бесщеточных двигателей постоянного тока, которые могут использоваться в: робототехнике, электрических средствах передвижения, компьютерных технологиях, телекоммуникациях, современных системах промышленной автоматизации.
Типы генераторов
Конструкция генераторов очень похожа на строение электродвигателей. Однако если первый преобразует электрическую энергию в механическую, то второй - механическую в электрическую. Генераторы имеют очень широкую сферу
92
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
применения. Их можно встретить в аэропортах, больницах, на транспорте, компьютерах и средствах телекоммуникаций, на строительных площадках, в промышленности. В основном - это генераторы постоянного и переменного тока (рис. 3.24).
Рис. 3.24. Электрический генератор в разрезе
Генераторы также выполняют важную роль резервных источников питания для систем освещения, управляющих компьютерных центров, общественных объектов, подъемников, устройств контроля температуры, систем обеспечения здоровья. Когда отказывает основной источник питания, система управления вводит в действие резервный генератор.
Большинство подобных приборов состоит из постоянных магнитов с многослойным четырехполюсным ротором, выполненным в виде единой детали, цифрового регулятора напряжения, устройства защиты от перенапряжения и перегрузки, обмоток статора, сборки выпрямителя, подшипников и корпуса. Они обычно классифицируются по размеру корпуса, выходной мощности (кВт) и другим параметрам, определяемым Национальной ассоциацией производителей электрооборудования.
Ремонт двигателей
Проводя диагностику неисправностей двигателя, очень важно следовать логической, систематической процедуре, чтобы сэкономить время, не делать ненужных тестов и замены деталей. Большинство обычных неисправностей можно легко выявить с помощью простых контрольно-измерительных приборов. При анализе и ремонте важно, чтобы специалист хорошо понимал назначение данного оборудования.
Стандартный анализ вышедшего из строя двигателя начинается с осмотра и прослушивания. Поищите какие-либо очевидные неисправности: сломанные торцевые крышки, рамы, тугой или неподвижный вал, сгоревшие провода. Каждый
Ремонт двигателей
93
из таких симптомов может позволить быстро локализовать проблему. Шумящий двигатель или неподвижный вал, - возможно, признак неисправности в подшипниках. Проверить работоспособность этих компонентов можно, поворачивая вал и пытаясь перемещать их вверх и вниз. Вал, который не вращается, не зафиксирован или имеет значительный люфт при движении вверх-вниз, может указывать на сломанный подшипник.
Основные приборы, используемые при поиске неисправностей электродвигателей:
♦	тестовая лампа;
♦	амперметр;
♦	устройство проверки обмоток;
♦	мегомметр.
Прежде, чем пытаться включать двигатель, специалист должен проверить его на наличие дефектов в схеме, таких как замыкание на землю, короткое замыкание, обрыв.
Как вы помните, замыкание на землю возникает, когда образуется электрический контакт обмоток с какой-либо металлической деталью двигателя. Обычно это происходит из-за плохо изолированного провода со статором или торцевыми крышками. В результате могут перегорать предохранители или возникать сильный нагрев, снижаться мощность. Такая неисправность может привести к поражению током, поэтому при проверке двигателя с замыканием на землю необходима крайняя осторожность. Для этого подключите один вывод тестовой лампы к одному из выводов двигателя, а другой - к статору или корпусу двигателя (рис. 3.25). Если лампа горит, это зйачит, что в двигателе замыкание на землю.
Выводы пробника
Рис. 3.25. Использование тестовой лампы для проверки двигателя на замыкание на землю
Обрыв в схеме, как вы знаете, возникает в результате разрыва цепи двигателя, что не позволяет току совершить замкнутый путь. В этом случае двигатель не будет работать, а станет издавать жужжащие звуки.
Для проверки подключите выводы тестовой лампы к выводам двигателя. Если лампа не горит, значит, произошел обрыв. В противном случае целостность цепи сохранена (рис. 3.26).
Короткое замыкание возникает вследствие дефекта, при котором два провода цепи соединяются и образуют путь для тока в обход нормального пути его
94
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
Выводы пробника
Рис. 3.26. Использование тестовой лампы для проверки двигателя на обрыв
движения. Амперметр (используйте прибор с зажимами) часто позволяет обнаружить короткое замыкание в двигателе. Если показания прибора превышают нормальное значение, которое можно найти на бирке двигателя, это первый признак короткого замыкания. Имейте в виду, что другие факторы - низкое напряжение, плохие подшипники, перегрузка, могут привести к слишком большому току двигателя. Горячий, дымящийся прибор, вызывающий перегорание предохранителей, может быть закорочен.
Кроме того, двигатель с коротким замыканием может быстро нагреваться, не запускаться, становиться горячим или работать медленно. Признаком короткого замыкания часто является посторонний шум. Если при включении питания однофазный двигатель только жужжит, попробуйте повернуть вал рукой. Если мотор заработает, то проблема в схеме запуска. Однако если двигатель запускается, но работает неровно: замедляется, затем опять стабильно работает, проблема в рабочей схеме.
Рис. 3.27. Использование мегомметра для проверки двигателя на замыкание на землю и обрыв
Ремонт двигателей
95
Помимо тестовой лампы, замыкание на землю и обрыв в схеме можно обнаружить с помощью мегомметра (рис. 3.27).
Для этого подключите один вывод мегомметра к корпусу, а другой к одному из выводов двигателя. У прибора с замыканием на землю показания будут 0 или около 0. Для проверки на обрыв, подключите мегомметр к каждой паре фаз двигателя. Двигатель с обрывом покажет высокое сопротивление.
ч Омметр также можно использовать для тестирования двигателя на замыкание на землю и обрыв.
Другой способ проверки обмоток возбуждения на короткое замыкание заключается в том, что вы разбираете двигатель и прикладываете небольшое напряжение к обмоткам статора. При этом катушка становится электромагнитом. Поднесите отвертку к каждой катушке и медленно отодвигайте, ощутив магнитное притяжение. Катушка с меньшим притяжением может быть закорочена. Кроме того, если одна из них более горячая, то это еще одно свидетельство в пользу дефекта.
Прежде чем разбирать двигатель, пометьте торцевые крышки и корпус соответственно их расположению. Обычно переднюю крышку помечают двумя штрихами, а заднюю одним. Маркировка двигателя позволяет специалисту правильно собрать его. Необходимо также пометить передний конец вала. Это можно сделать, нацарапав крест. Можно также пометить основание, обращенное к передней торцевой крышке. Многие специалисты выполняют отметки на валу ротора с помощью ножа или небольшого напильника, помечая правильное положение ротора. Метка обычно располагается на переднем конце около передней торцевой крышки.
Для диагностики замыкания на землю обычно необходимо разобрать его и пройти по обмоткам для нахождения местз замыкания с металлическими частями двигателя. После локализации проблемы выполняется чистка обмоток, если они грязные или обугленные. Сделать это можно с помощью растворителя. Снова изолируйте обмотки, покрыв их, например слоем эпоксидной смолы или другого изоляционного состава, застывающего на воздухе. Если создается впечатление, что замыкание на землю было вызвано влагой, просушите двигатель в теплой печи или с помощью вентилятора.
Типичными причинами обрыва в цепи являются неисправный или неправильно установленный центробежный переключатель, дефектный конденсатор или оборванный провод в цепи двигателя. Локализуя обрыв, прежде всего проверьте конденсатор. Есть несколько способов сделать это, например заменить новым с теми же номиналами. Если обрыв исчез, то проблема была в конденсаторе. Другой метод проверки - проба на искру. Подключите конденсатор на мгновение к сети питания 220 В. После того как вы отсоедините его от сети, закоротите выводы конденсатора отверткой с изолированной ручкой (рис. 3.28). У хорошего конденсатора образуется искра. Отсутствие ее говорит о неисправности.
Для проверки на замыкание на землю можно использовать простую тестовую лампу. Подключите один из ее выводов к контакту конденсатора. Соедините другой вывод лампы с металлическим корпусом конденсатора. Если лампа
96
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
Рис. 3.28. Проба на искру выполняется с помощью замыкания контактов конденсатора отверткой
горит, то конденсатор замкнут на землю и его следует заменить (рис. 3.29). Другие методы, тестирования - это использование омметра, тестера конденсаторов или комбинации амперметр-вольтметр.
Рис. 3.29. Использование тестовой лампы для проверки конденсатора на замыкание на землю
Центробежный выключатель часто является причиной обрыва в однофазном двигателе. Следует проверить его, чтобы убедиться, что контакты замыкаются. Если этого не происходит, можно добавить прокладки на вал двигателя для решения проблемы. Кроме того, проверьте состояние центробежного переключателя, поскольку он может быть неисправен, и его необходимо заменить.
Обмотки двигателя также следует протестировать на возможные разрывы. Один или более поврежденных проводов может вызвать обрыв в схеме. Если обмотки двигателя плохо прикреплены или повреждены и их невозможно починить, то необходима замена. Короткое замыкание обмоток статора можно
Ремонт двигателей
97
проверить с использованием внутреннего устройства проверки обмоток. Поместите устройство на пластины статора на одном конце катушки. Вместе устройство и катушки статора действуют как трансформатор. Катушки устройства работают как первичная обмотка, а катушки статора образуют вторичную цепь.
Устройство проверки обмоток, в которое может быть встроена чувствительная пластина, при размещении на короткозамкнутой катушке будет сильно вибрировать (рис. 3.30). Когда определено, что в двигателе короткое замыкание, следует или заменить сам двигатель, или поменять обмотки.
Рис. 3.30. Проверка статора на короткое замыкание катушки с использованием внутреннего устройства проверки обмоток
Двигатель, в котором замкнут якорь, может подпрыгивать, сильно вибрировать, гудеть, рычать, не работать, приводить к сгоранию предохранителей.
Рис. 3.31. Проверка якоря на короткое замыкание с использованием внутреннего устройства проверки обмоток
98
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
Короткое замыкание катушки якоря часто можно определить по изменению цвета и пробою изоляции.
Якорь двигателя можно протестировать на короткое замыкание с использованием внутреннего устройства проверки обмоток. Поместите якорь на устройство, положите на якорь узкую металлическую пластину. Вращайте якорь. Если пластина вибрирует с большой частотой, то это говорит о коротком замыкании (рис. 3.31).
Можно проверить якорь на заземление с помощью тестовой лампы. Соедините один ее вывод с коллектором, а другой - с валом ротора. Если лампа загорается, это означает, что якорь закорочен на землю (рис. 3.32).
Рис. 3.32. Использование тестовой лампы для проверки якоря на замыкание на землю
Хотя вопрос перемотки обмоток статора и ротора не рассматривается в этой книге, отметим, что проведение данной процедуры часто является экономически оправданным. Обычно не так выгодно перематывать небольшие изделия, как крупные. Технический прогресс привел к производству доступных, высококачественных обмоток и большого числа их конфигураций для всех моделей двигателей. Современные намоточные станки снабжены компьютеризованным управлением и экранами дисплеев, что обеспечивает простую, гибкую и высокоэффективную работу (рис. 3.33)
Неисправные подшипники могут стать причиной шума при работе двигателя, сильного нагревания или, вообще, прекращения его работы. Их можно наладить, прочистив или переустановив.
Если шарикоподшипники не обеспечивают плавного вращения, их следует заменить. Для этого обычно используется специальный инструмент или съемник. При установке нового подшипника для прижатия к валу часто используется инструмент для запрессовки. Подшипники скольжения обычно удаляются,
Ремонт двигателей
99
Рис. 3.33. Намотка якоря на компьютеризованном электронно-пневматическом обмоточном станке
а новые устанавливаются на место с использованием пресса или специальной оправки. Иногда это можно сделать с помощью приспособления, показанного на рис. 3.34. Часто внутренний диаметр нового подшипника меньше предыдущего. При этом необходимо расширить его с использованием инструмента, называемого расширитель.
Репульсионный двигатель не запускается, щетки сильно искрят, он работает прерывисто или с малой мощностью? Причинами могут быть грязный или изношенный коллектор, неправильно установленные щетки и держатель для них или сломанная прижимная пружина щеток.
Если щетки сильно изношены, их следует заменить. При этом обязательно устанавливайте только предназначенные для данного двигателя компоненты. Точный размер и форма контактной площадки щеток очень важны для
Рис. 3.34. Специальный инструмент, используемый для снятия подшипников скольжения с торцевой крышки
удовлетворительной работы двигателя.
Прежде, чем вставить щетки, убедитесь, что держатель чистый, - это позво-
ляет щеткам свободно двигаться. Кроме того, упругость пружины должна быть достаточной для поддержания постоянного давления, обеспечивающего хороший контакт щеток с коллектором. Когда щетки установлены, убедитесь в соответствии профиля щеток и коллектора. Это выполняется с помощью специального шлифовочного бруска для коллектора.
При шлифовке щеток выполните следующие действия:
100
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
1.	Запустите двигатель на нормальной скорости.
2.	Установите брусок для зачистки непосредственно у вращающегося коллектора. Убедитесь, что щетки твердо расположены у коллектора.
3.	Прижмите брусок к коллектору только на несколько секунд. Брусок стачивает гранулы и обеспечивает соответствие профилей щеток и коллектора. Не перестарайтесь! Это вызовет износ коллектора и щеток.
4.	В завершение сдуйте струей воздуха гранулы с коллектора и области щеток (рис. 3.35).
Рис. 3.35. Способ ручной зачистки коллектора с помощью бруска
Если жесткость пружины или положение держателя щеток неправильно, то двигатель может плохо работать. Проверьте натяжение пружины. В том случае, когда пружина не прижимает щетки к коллектору достаточно плотно, их необходимо заменить. Убедитесь, что держатель обеспечивает плотное и ровное прилегание щеток к коллектору.
Коллектор необходимо прочистить и подрезать, если он выглядит неровным, грязным или в нем слишком много слюды. В зависимости от состояния коммутатора наиболее эффективным и быстрым способом может оказаться ручная обработка точильным камнем (см. рис. 3.35). Этот метод позволяет провести очистку коллектора при работе двигателя с нормальной скоростью. Обработка на станке требует разборки двигателя и помещения якоря на станок, который вращает его. Никогда не обрабатывайте поверхность коллектора больше, чем необходимо для
Ремонт двигателей
101
получения чистой концентрической поверхности. Слишком сильное обтачивание полностью уничтожит медные пластины коллектора.
После очистки и обтачивания необходимо также подрезать слюду коллектора. Этот процесс называется прочисткой зазоров. Сделать это можно вручную с помощью лезвия ножовки или специального инструмента. Ручная операция сейчас выполняется редко из-за трудоемкости и неэффективности. Подрезание необходимо для удаления слюды между пластинами коллектора до уровня, приблизительно равного ширине зазора. Слюда удаляется, чтобы обеспечить возможность плавного движения щеток по коллектору, который имеет строгую концентрическую форму без выступов и заусенцев. На рис. 3.36 показано правильное положение устройства зачистки слюды с электроприводом.
Рис. 3.36. Удаление слюды из зазоров коммутатора с помощью специального устройства прямого привода
Часто требуется изменить направление вращения однофазного двигателя. Сделать это можно, поменяв выводы пусковойл<ли рабочей обмотки двигателя (рис. 3.37).
Ту же самую операцию можно применить к двигателям с расщепленными полюсами. Для этого необходимо разобрать его и поменять концы статора, потому что направление вращения зависит от действия экранирующей катушки (рис. 3.38).
102
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
Рис. 3.37. Изменение направления вращения однофазного двигателя
Рис. 3.38. Изменение направления вращения двигателя с расщепленными фазами
Чтобы измененть направление вращения двигателя постоянного тока, просто поменяйте полярность подключения полюсов возбуждения или щеток.
Ремонт двигателей
103
Направление движения трехфазного двигателя легко изменить, поменяв местами любые два из трех выводов двигателя (обычно два внешних вывода) -рис. 3.39.
Рис. 3.39. Изменение направления вращения трехфазного двигателя за счет переключения двух внешних выводов
Когда вы снова собираете двигатель, очень важно, чтобы провода не контактировали с его металлическими частями. Обратите особое внимание также, чтобы провода не оказались зажатыми между корпусом и торцевой крышкой. Это вызовет замыкание на землю или короткое замыкание.
Когда вы снова собираете двигатель, необходимо проследить, чтобы все отметки, которые вы нанесли при его разборке, вновь совпали. Обычно для правильного выравнивания торцевые крышки устанавливают с помощью резинового молотка или деревянной киянки. Характерные проблемы редукторных электродвигателей связаны с неправильной смазкой, плохими уплотнениями, прокладками и редукторами. Для большинства редукторных двигателей используется жидкое машинное масло, образующее постоянную смазывающую пленку на зубьях шестерней. Однако для небольших двигателей этого типа из-за проблем с уплотнениями используются густые смазки. Необходимо следить, чтобы смазки было достаточно и она была чистой. В противном случае могут возникнуть повреждения уплотнителей и шестерен. Кроме того, избыточная работа или функционирование в аномальных условиях (например, слишком высокая или низкая температура окружающей среды) могут уменьшить срок службы шестерен.
104
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
К числу проблем, возникающих в шаговых двигателях, относятся некачественные подшипники, короткозамкнутые обмотки, неисправные соединительные проводники, неправильная работа привода. Очень важно локализовать неисправность, определив, что именно является причиной - шаговый двигатель, соединительные проводники или привод.
Шаговый двигатель можно проверить на короткое замыкание, обрыв, замыкание на землю аналогично обыкновенному. Замена шагового двигателя также является хорошим средством локализации неисправности.
Еще одна операция по обслуживанию двигателей заключается в проверке на потери в сердечнике. Это дает информацию об эффективности статоров, роторов и якорей. Потери в сердечнике измеряются в ваттах на кг (Вт/кг). Определяющими потери факторами являются уровень гистерезиса и вихревые токи (рис. 3.40).
Рис. 3.40. Подключение оборудования для измерения потерь в сердечнике с использованием тестера
Трансформаторы и другие устройства с кольцевыми обмотками не должны проверяться таким образом, поскольку катушки могут вырабатывать высокое напряжение опасного уровня. Работая с подобными приборами, всегда следуйте руководству изготовителя.
Ремонт генераторов
Сервисное обслуживание генераторов напоминает работу с электродвигателями. Начните с обсуждения признаков неправильноой работы генеретора.
Ремонт генераторов
105
Типичными неисправностями генераторов являются: сгоревший предохранитель регулятора, неработающий регулятор, низкое или высокое выходное напряжение, меняющееся напряжение. Помните, что в генераторе могут иметь место высокие остаточные напряжения. Проведите тщательный осмотр, проверьте, нет ли оборванных соединений, зажатых или поврежденных проводов, заржавевших выводов, посторонних объектов, обгоревших или изношенных компонентов. Нередко внешние частицы - грязь и промышленные отходы -проникают в генератор через решетку охлаждения и засоряют его, нарушая правильный режим работы.
Для проверки плавкого предохранителя регулятора можно при выключенном питании использовать омметр. Чтобы проверить работоспособность регулятора, можно протестировать входное и выходное напряжение. Типичная проблема возникает при работе с нагрузкой, когда выходное напряжение слишком низкое или меняется. Если измерители работают точно и нет некачественных или дефектных соединений, может быть, необходимо разобрать генератор и проверить, все ли его составляющие на месте.
Разбирая генератор, отключите питание, пометьте и промаркируйте все провода и детали для последующей сборки. Используйте соответствующие подъемники, ремни, крепления и другое оборудование, чтобы предотвратить повреждение деталей, особенно при работе с большими, тяжелыми приборами (рис. 3.41).
Рис. 3.41. Снятие задающего генератора с использованием ремня
Всегда проверяйте в статоре незафиксированные, изношенные или сгоревшие обмотки, измеряйте сопротивление между выводами и сравнивайте его со значением, указанным изготовителем.
 Нулевое сопротивление соответствует короткому замыканию, а бесконечное означает обрыв в схеме.
Проверьте также мегомметром, не возникло ли замыкание на землю между обмотками и корпусом.
106
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
При снятии тяжелых роторов генераторов следует использовать подъемник и специальные крепления (рис. 3.42). Аккуратно снимите ротор, направляя его, но не касаясь при этом деталей, чтобы предотвратить повреждение ротора или обмоток.
Рис. 3.42. Использование подъемника и специальных креплений для снятия ротора основного генератора
Неисправные диоды - обычная проблема. Проверьте их, измерив сопротивления. Диод должен показывать высокое сопротивление в одном направлении и низкое при смене положения выводов измерительного прибора. Короткозамкнутый двухэлектродный прибор имеет низкое сопротивление в обоих направлениях. Диод с обрывом, напротив, обладает высоким сопротивлением в обоих направлениях (рис. 3.43).
Рис. 3.43. Сборка задающего генератора и выпрямителя
Профилактическое техническое обслуживание
107
Помните, что прибор для измерения сопротивления может иметь недостаточное внутреннее напряжение, чтобы заставить диод проводить ток. Этот фактор влияет на результаты диагностики. Не используйте мегомметр для проверки диодов или регулятора. Если диод или выпрямитель необходимо заменить, соблюдайте полярность подключения. Не закручивайте гайки зажимов Слишком сильно.
Заменяя подшипники, используйте соответствующий съемник (рис. 3.44). Иногда крышка подшипника прилипает, и ее приходится нагревать. При замене старой смазки из полости крышки подшипников аккуратно, стараясь не переборщить, заполняйте ее новой до половины высоты.
Рис. 3.44. Снятие подшипника с помощью съемника подшипников и нагревания
Профилактическое техническое обслуживание
Срок службы электродвигателей и генераторов часто определяется тем, как проходит их профилактическое техническое обслуживание. Приборы, за которыми не ухаживают надлежащим образом, можно часто узнать по наличию ржавчины. Продуманная программа технического обслуживания включает осмотр, регистрацию состояния и сервис устройств. Небольшие настройки: замена подшипников, простая очистка двигателя или генератора может предотвратить дорогостоящий и требующий значительного времени ремонт.
Регулярные проверки могут значительно снизить частоту отказов и периодов неудовлетворительной работы электродвигателей. Осмотр должен сопровождаться ведением журнала, где необходимо регистрировать состояние устройств и проведенные работы. Помните, что к каждому прибору требуется индивидуальный подход. Следует чаще проверять двигатели, которые работают в условиях повышенного загрязнения или влажности.
108
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
Наиболее очевидными дефектами, которые вы можете встретить при осмотре двигателей, являются грязь, жир, вода и химикаты. Все перечисленное может вызвать короткое замыкание или замыкание на землю, привести к тому, что двигатель при работе будет очень горячим. В результате не избежать быстрого износа деталей и ремонта.
Грязь, масло, а также другие загрязнения перекрывают вентиляционные отверстия двигателя, а накапливаясь на коллекторе, нарушают электрический контакт, ускоряют износ щеток. Скопление воды может вызвать короткое замыкание или замыкание на землю обмоток якоря или статора. В результате двигатель может выйти из строя.
Репульсионные двигатели также требуют регулярного осмотра. Проверьте прижим щеток и выравнивание щеток и держателя. Слегка постучите небольшим резиновым молотком по пластинам коллектора, чтобы проверить их крепление. Плохие щетки необходимо заменить. Грязный коллектор следует протереть чистой тканью или бруском.
 Не чистите коллектор наждаком, это может вызвать короткое замыкание пла-стин.
Вал ротора необходимо регулярно проверять на отсутствие биений. Для этого воспользуйтесь циферблатным индикатором. Контакты выключателя необходимо регулярно чистить и придавать им правильную форму с помощью надфиля, напильника или чистящего бруска (но не наждачной бумаги!). Большинство фирм - поставщиков электрического и электронного оборудования продают химические средства очистки контактов.
Все болты и гайки должны быть затянуты. Провода и обмотки двигателя необходимо проверять на наличие грязи, разрывов, изношенной изоляции. Это предотвратит серьезные поломки в будущем. Обычно проводят чистку и повторную изоляцию обмоток двигателей с использованием застывающей на воздухе эпоксидной смолы или другого изолирующего материала.
Для предотвращения поломок двигателей очень важен регулярный контроль износа подшипников. Подшипники скольжения следует регулярно смазывать. Но не закладывайте в них слишком много смазочного материала! Шарикоподшипники можно обрабатывать маслом или консистентной смазкой, в зависимости от спецификации изготовителя. Обычно подходящим средством для шарикоподшипников служит консистентная смазка - комбинация масла и мыла. Не забывайте, что слишком большое ее количество может спровоцировать перегрев. Это вызовет преждевременный выход подшипников из строя. Скрипящие или очень тугие подшипники следует заменить.
Необходимо сразу уделить внимание неправильному осевому зазору. Это можно проверить, если тянуть, а затем толкать ось вперед-назад. Обычно максимальный осевой зазор составляет 0,4 мм. Отрегулировать его можно, добавляя или удаляя прокладки, смазывая прокладки или затягивая гайки или винты.
Любое увеличение или уменьшение температуры двигателя, увеличение шума, изменение цвета или формы является обычным признаком проблем. Эти условия требуют немедленной реакции и поиска причин их возникновения. Если
Вопросы для самоконтроля
109
выяснено, что двигатель невозможно отремонтировать или он не подходит для данного применения, необходимо заменить его. При выборе подходящего двигателя следует принять во внимание несколько факторов. Рабочие и нагрузочные параметры должны соответствовать назначению двигателя. Национальная ассоциация изготовителей электрического оборудования вырабатывает стандарты для двигателей: вращающий момент, скорость вращения (оборотов в минуту), мощность в лошадиных силах, корпус и монтажные размеры. Например, если выполняемая работа требует непрерывного действия в течение, скажем, нескольких часов, необходимо выбрать двигатель продолжительного действия. Для кратковременных операций можно использовать двигатель периодического действия. В других случаях, когда устройство должно работать при специфических температурных условиях или при особых требованиях к вращающему моменту, необходимо использовать специальную смазку и обратить внимание на момент двигателя.
Энергетическая эффективность также является важным фактором. Например, разница в стоимости и экономии электроэнергии при использовании двигателей 50 Вт и 75 Вт может быть очень существенной, если двигатель 50 Вт достаточен для данного применения. Аналогично, перегруженный двигатель будет требовать излишнего тока и со временем сгорит, если он неправильно выбран для данной работы. Перед приобретением обязательно ознакомьтесь с рекомендациями изготовителей по выбору двигателей и эффективности использования энергии.
Вопросы для самоконтроля
Выберите верный ответ:
1.	Обычно электрические двигатели используют свойства репульсии или: а) магнетизма;
б)	емкости;
в)	сопротивления;
г)	индукции;
д)	полупроводимости.
2.	При поиске неисправностей электрических двигателей используются: приборы измерения силы тока, тестовые лампы, устройство проверки обмоток и:
а)	замена;
б)	нагревание и охлаждение;
в)	шунтирование;
г)	мегомметр;
д)	осциллограф.
3.	Горячий, дымящийся двигатель является признаком:
а)	замыкания на землю;
б)	обрыва в схеме;
в)	короткого замыкания;
г)	«а» и «б»;
д)	«в», «г» и «д».
110
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
4.	Наилучший способ проверки конденсатора электродвигателя 220 В:
а)	шунтирование;
б)	проверка на искру;
в)	вольтметр;
д)	амперметр;
е.	все перечисленное.
5.	Направление вращения трехфазного двигателя можно изменить:
а)	переключив два их трех выводов;
б)	разобрав двигатель и поменяв местами два вывода;
в)	изменив напряжение;
г)	перевернув статор;
д)	ничего из перечисленного.
6.	Когда вы производите очистку коллектора нельзя использовать:
а)	бумагу;
б)	чистую ткань;
в)	оба: «а» и «б»;
г)	наждак;
д)	ничего из перечисленного.
7.	Измерительный прибор, который используется для измерения отклонения вала двигателя:
а)	вольтметр;
б)	амперметр с зажимами;
в)	устройство проверки обмоток;
г)	мегомметр;
д)	циферблатный индикатор.
8.	Необходимо регулярно смазывать подшипник:
а)	скольжения;
б)	шарикоподшипник;
в)	оба: «а» и «б»;
г)	ничего из перечисленного;
д)	все перечисленное.
9.	Консистентная смазка обычно является смесью:
а)	воды и мыла;
б)	вазелина и мыла;
в)	бензина и воды;
г)	масла и мыла;
д)	ничего из перечисленного.
10.	Максимальный осевой зазор обычно составляет:
а)	0,4 мм;
б)	0,32 см;
в)	0,64 см;
г)	1,27 см;
д)	2,54 см.
Вопросы для самоконтроля
111
И. Передача, которая имеет наименьший уровень шума:
а)	прямозубая цилиндрическая передача;
б)	косозубая передача;
в)	червячная передача;
г)	все перечисленные.
12.	Передача, используемая в редукторах большой мощности:
а)	прямозубая цилиндрическая;
б)	косозубая передача;
в)	червячная передача;
г)	все перечисленные.
13.	Смазка, которая используется в большинстве редукторных электродвигателей:
а)	масло;
б)	консистентная смазка;
в)	оба: «а» и «б»;
г)	ничего из перечисленного.
14.	Выбор редукторного электродвигателя обычно определяется:
а)	скоростью;
б)	вращающим моментом;
в)	оба: «а» и «б»;
г)	ничего из перечисленного.
15.	Система управления приводом шагового двигателя основана на:
а)	микропроцессоре;
б)	преобразователе;
в)	компьютере;
г)	все перечисленное.
16.	Прибор, который преобразует механическую энергию в электрическую, это:
а)	двигатель;
б)	тестер потерь в сердечнике;
в)	генератор;
г)	шаговый двигатель.
17.	Генератором переменного тока называется:
а)	двигатель переменного тока;
б)	шаговый двигатель переменного тока;
в)	регулятор;
г)	электрическая машина переменного тока.
18.	Гистерезис и вихревые токи являются факторами:
а)	потерь в сердечнике;
б)	дифференциала регулирования;
в)	ограничения бросков тока;
г)	возбуждения ротора.
112
ГЛАВА 3. Сервисное обслуживание двигателей и генераторов
19.	Высокое остаточное напряжение может иметь место в:
а)	регуляторе;
б)	статоре;
в)	аттенюаторе;
г)	выпрямителе.
20.	Высокое сопротивление в обоих направлениях при проверке диода показывает:
а)	обрыв в схеме;
б)	короткое замыкание;
в)	замыкание на землю;
г)	ничего из перечисленного.
Вопросы и проблемы
1.	Объясните основное различие между электродвигателем и генератором.
2.	Расскажите об основных принципах работы электродвигателя.
3.	Назовите основные части электродвигателя.
4.	Объясните разницу между репульсионными и индукционными двигателями.
5.	Назовите несколько типов электродвигателей.
6.	Что такое обрыв в схеме?
7.	Что такое короткое замыкание?
8.	Расскажите, как проверить двигатель на обрыв, короткое замыкание и замыкание на землю.
9.	Расскажите о наилучшем способе разборки двигателя.
10.	Расскажите о способах проверки конденсатора
11.	Объясните разницу между внешним и внутренним устройством проверки обмоток.
12.	Назовите два типа подшипников.
13.	Расскажите, как чистить загрязненный коллектор.
14.	Перечислите основные причины выхода их строя электродвигателей.
15.	Какие типы передач применяются в редукторных электродвигателях?
16.	Почему для смазки редукторных двигателей используется консистентная смазка, а не масло?
17.	Расскажите о работе шагового двигателя.
18.	Опишите систему привода шагового двигателя.
19.	Перечислите области применения шагового двигателя.
20.	Объясните назначение тестера потерь в сердечнике.
21.	Расскажите, как проверить диод генератора.
22.	Перечислите меры предосторожности при тестировании регулятора.
23.	Опишите симптомы неисправностей в генераторе.
24	Перечислите несколько деталей генератора.
Сервисное обслуживание промышленных устройств
управления
Промышленные системы управления непрерывно совершенствуются. Автоматизированные приборы различных типов: электронные, гидравлические, пневматические и современные системы с компьютерным управлением развиваются очень быстро, позволяя уменьшить количество персонала и себестоимость продукции, повысить безопасность, эффективность производства и улучшить контроль качества. Они используются для управления работой электродвигателей, осветительных приборов, роботов, аудиоустройств, нагревателей, конвейеров, станков, насосов, медицинского диагностического и терапевтического оборудования, а также координируют производство.
Например, каждый электродвигатель должен иметь устройство управления, будь то простой выключатель для пуска и остановки или сложная микропроцессорная система пошагового управления, для обеспечения широкого спектра функций энергосиловой машины: пуска и остановки, реверса, ускорения, замедления, торможения, выполнения операций с контролем времени. Средства управления так же важны для двигателя, как и питающая его электроэнергия.
В предыдущем разделе был дан обзор наиболее часто встречающихся типов электродвигателей и их ремонта. Цель настоящей главы в том, чтобы показать, как можно управлять электродвигателями и другими мощными устройствами. Рассмотрена основная теория промышленных устройств управления энергией, а также типы контроллеров, процедуры проверки и профилактическое техническое обслуживание.
114
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
Основные сведения
Основные функции управления двигателем заключаются в том, чтобы обеспечить выполнение им определенных операций: пуска, остановки, защиты, последовательности операций, реверса, изменения скорости. Простейшее устройство управления двигателем - однополюсный переключатель, который руководит подачей тока, запуская и останавливая асинхронный индукционный двигатель с короткозамкнутым ротором (рис. 4.1).
Рис. 4.1. Однополюсный переключатель является простым средством управления двигателем
Кроме обеспечения защиты двигателя, устройство управления помогает защитить оператора. Плавкий предохранитель служит для защиты двигателя и оператора. Регулируемый трансформатор выполняет функции управления скоростью двигателя постоянного тока (рис.4.2).
Рис. 4.2. Плавкий предохранитель и регулируемый трансформатор действуют как средство управления
Системы управления обычно бывают двух типов: замкнутые и разомкнутые. Например, когда вы разжигаете на улице костер, количество брошенных в огонь
Основные сведения
115
дров регулирует уровень тепла - это разомкнутая система. Если дровяная печь управляется заслонкой - это форма замкнутой системы. Действие обратной связи, приводящее к открытию или закрытию заслонки, обеспечивает лучшую регулировку, чем открытая система. Сложные системы коммерческого назначения работают по принципу замкнутых систем и используют термостаты, электродвигатели и вентиляторы, регуляторы и программируемые устройства для управления нагреванием. Работа многих устройств управлений двигателями основана на принципах электромагнетизма. Если изолированный провод обмотать вокруг стального стержня и концы провода подключить к источнику постоянного тока, мы получим электромагнит (рис. 4.3). Изменение направления тока влияет на полярность стального стержня.
Рис. 4.3. Металлический стержень, вокруг которого намотан провод с протекающим по нему током, образует электромагнит
Проволочная катушка, подключенная к батарее, образует магнитный поток, который окружает катушку, как и в случае постоянного магнита (рис. 4.4). Этот магнитный поток является основой работы двигателя. Он создает механическое движение, которое обеспечивает выполнение и остановку операций.
Рис. 4.4. Магнитный поток окружает электромагнит
Типичным примером устройства управления двигателем является реле. Это электромагнитное устройство, которое используется для размыкания и замыкания цепей (рис. 4.5).
Соленоид- это катушка реле, в которой используется описанный принцип для намагничивания металлического сердечника, притягивающего подвижный металлический пружинный контакт или иную часть исполнительного механизма.
116
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
Рис. 4.5. Простое электрическое реле
Существуют сотни применений реле и соленоидов. В последнее время на смену электромеханическим реле приходят полупроводниковые.
Прерыватели представляют собой специальный тип реле, который часто применяется в качестве ручного выключателя. Они используются в быту, бизнесе и промышленности для защиты электрических цепей от чрезмерного тока и перегрузки. На рис. 4.6 показана упрощенная схема магнитной части прерывателя. Сильный ток заставляет магнит потянуть рычаг вниз, развести контакты реле и разорвать цепь.
Рис. 4.6. Простой прерыватель
Типы устройств управления
Существует очень большое количество устройств управления для двигателей промышленного назначения и устройств включения-выключения питания. Каждое имеет свои специфические характеристики. Некоторые из наиболее популярных типов контроллеров следующие:
Типы устройств управления
117
♦	устройства защиты от перегрузки;
♦	ручные пускатели;
♦	магнитные пускатели;
♦	реверсивные магнитные пускатели;
♦	контакторы освещения;
♦	кнопочные пульты;
♦	концевые выключатели;
♦	барабанные переключатели;
♦	таймеры;
♦	электронные приводы;
♦	программируемые контроллеры;
Устройства защиты от перегрузки
Большинство таких устройств управления двигателями, как ручной, магнитный или реверсивный пускатель, обладает некоторой степенью защиты от перегрузки. Один из приборов, служащих для этого - термореле перегрузки с легкоплавким сплавом (рис. 4.7). Когда при перегрузке возникает слишком большой ток, эвтектический (легкоплавкий) сплав в латунном сосуде переходит в жидкое состояние и более не может удерживать храповой механизм от проворачивания. При этом размыкаются контакты, подключенные к исполнительному реле. Когда сосуд охладится и сплав застынет, реле необходимо вручную установить в исходное положение. Многократные срабатывания и установка реле обычно не влияют на его калибровку. Различные типы таких реле включают медленные, стандартные и быстродействующие реле. Кроме того, более сложные термореле перегрузки с легкоплавким сплавом содержат изолированные контакты для подачи сигнала тревоги, которые позволяют использовать реле с пускателем для связи с компьютером, где требуется гальваническая развязка.
Рис. 4.7. Термореле перегрузки с плавящимся сплавом
Биметаллические термореле перегрузки работают на основе изгибающейся при нагревании биметаллической полосы, которая при этом размыкает контакты (рис. 4.8).
118
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
Рис. 4.8. Биметаллическое термореле перегрузки
Эти реле сбрасываются автоматически. Они работают подобно термостату. По мере снижения температуры пластина принимает первоначальную форму и реле сбрасывается. Прежде, чем работать с устройством, специалист по обслуживанию должен отключить питание. В противном случае устройство может после охлаждения включиться и причинить вред. Дополнительные приспособления включают режимы для работы при температуре окружающей среды, варианты без компенсации, контакты для подачи сигнала тревоги, полупроводниковые индикаторы. Параметры устройства должны соответствовать параметрам того прибора, с которым они работают. Многие двигатели содержат регулировочный винт. С его помощью можно установить точный уровень перегрузки, при которой срабатывает реле.
Рис. 4.9. Многоцелевое электронное реле перегрузки и датчик тока
Типы устройств управления
119
Электронные (полупроводниковые) средства защиты от перегрузки, например многоцелевые реле для двигателей постоянного тока становятся все более популярны (рис. 4.9).
Когда достигается заданная величина тока, реле срабатывает. Возможны и ручная, и автоматическая операции сброса. Эти устройства защиты от перегрузки могут также подать сигнал тревоги и инициировать выполнение других функций, предотвращая повреждения системы управления.
Другой специальный тип полупроводниковых элементов автоматики - это электронное логически программируемое реле перегрузки, обеспечивающее программный контроль функций для двигателей и других устройств.
Еще один тип - магнитное реле перегрузки. Его работа основана на принципе электромагнетизма (рис. 4.10).
Если возникает чрезмерный ток, катушка втягивает сердечник, который размыкает контакты. Эти реле используются в блоках управления электрических двигателей, нагревателей, при-
Рис. 4.10. Магнитное реле перегрузки
боров освещения, аудиоустройств. Современные реле содержат функцию по-
давления помех, вызванных переходными процессами, логические картриджи,
специальные защелки.
Ручные пускатели
Ручной пускатель переключается с помощью тумблера. Обычно он используется для включения или выключения маломощного двигателя в 1 л.с. или менее. Некоторые ручные однофазные пускатели обеспечивают защиту с помощью термореле, которое срабатывает при слишком большом токе. После срабатывания термореле необходимо дать ему время остыть перед тем, как его работоспособность будет восстановлена. Такие реле не обеспечивают защиту от пониженного напряжения. Кроме того, если возникает прерывание подачи питания, контакты переключателя могут остаться в замкнутом состоянии, и работа двигателя возобновится, как только будет подано питание.
Двигатель может внезапно включиться - это представляет определенную опасность для оператора. Другие типы ручных переключателей обеспечивают контроль реверса, двухскоростной режим, съемный ключ.
Ручные трехфазные переключатели можно встретить там, где защита от перегрузки не важна. Они функционируют при мощности до 10 л.с. и напряжении 380 В в небольших насосах, транспортерах, нагревателях, вентиляторах, электрических машинах. Как правило, им находится место в небольших машинах с раздельной защитой от перегрузки (рис. 4.11).
Некоторые ручные пускатели обладают возможностью блокировки при понижении напряжения с автоматическим запуском. Соленоиды длительного действия
120
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
Рис. 4.11. Ручной пускатель двигателя без защиты от перегрузки
обесточиваются при прекращении подачи напряжения. Катушка реле должна быть сброшена вручную.
Другой тип ручных пускателей часто используется для управления однофазными двигателями до 5 л.с. и поляризованными двигателями до 10 л.с. Ручной линейный пускатель напряжения обеспечивает защиту от перегрузки с помощью термореле. После срабатывания и истечения интервала времени, достаточного для охлаждения, термореле требует сброса (рис. 4.12).
Рис. 4.12. Ручной пускатель для маломощных двигателей
Магнитные пускатели
Магнитные пускатели обычно используются для управления двигателями, трансформаторами и нагревательными приборами на расстоянии (рис. 4.13).
Магнитный пускатель и магнитный контактор, по сути, представляют собой одно и то же. Оба обладают способностью работать с большими токами (рис. 4.14).
Основное различие между этими двумя устройствами заключается в том, что у магнитного пускателя есть защита от перегрузки, а не имеющий ее контактор
Типы устройств управления
121
Рис. 4.13. Магнитный пускатель постоянного тока
Рис. 4.14. Магнитный пускатель с защитой от перегрузки
нуждается в дополнительном предохранительном средстве. Подобные устройства выпускаются в нескольких вариантах корпусов: пыленепроницаемых, антикоррозионных, водонепроницаемых, капленепроницаемых. Некоторые их них снабжены также полупроводниковыми схемами для защиты от обрыва фазы и перегрузки.
Основной принцип действия магнитного пускателя заключается в том, что когда ток подается в магнитную катушку, та втягивает якорь, который замыкает контакты стартера и запускает двигатель. Для предотвращения дребезга между магнитом и якорем из-за синусоидального изменения магнитного поля во времени добавляется экранирующая обмотка, помогающая изолировать якорь за
Рис. 4.15. Магнитный якорь и экранирующая обмотка
122
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
счет смещения фазы магнитной катушки. Кроме того, в многослойной стали оставляется зазор, чтобы предотвратить насыщение якоря под действием остаточного намагничивания, имеющего место в катушке после отключения тока (рис. 4.15).
В дополнение к защите от перегрузки магнитный пускатель содержит блокировочное устройство, которое в нормальном состоянии открыто и удерживает катушку. Она может быть сломана после того, как пользователь отпустит кнопку выключателя.
Реверсивные магнитные пускатели
Реверсивный магнитный пускатель используется для управления двигателем, который может вращаться в прямом и обратном направлении. В действительности, это два взаимосвязанных контактора. Этот пускатель состоит из двух магнитных контакторов с выводами для двигателя Tl, Т2 и ТЗ, соединенными с LI, L2 и L3 на одном контакторе. Выводы Т1 и ТЗ на другом контакторе включены в обратном порядке (рис. 4.16).
Рис. 4.16. Реверсивный магнитный пускатель и его схема
Типы устройств управления
123
Ни один из контакторов нельзя включить, если в это время подано питание на другой контактор. Это достигается за счет механического или электрического блокиратора. Если контакты, задающие движение вперед, замкнуты, механические и электрические блокираторы не позволят подать питание на контакты обратного вращения. Некоторые магнитные пускатели подключены к полупроводниковым устройствам, которые обеспечивают защиту от обрыва фазы, перегрузки вследствие воздействия температуры окружающей среды и недостаточной нагрузки. Кроме того, некоторые реверсивные контакторы состоят из двух механически и электрически связанных контакторов, которые расположены горизонтально или вертикально друг относительно друга. Эти контакторы могут быть разных типов: открытые, водонепроницаемые, в корпусе для работы в сложных условиях и могут выпускаться в вариантах для работы при питании 50 или 60 Гц.
Контакторы осветительных приборов
Существует много типов контакторов для осветительных приборов. Вот некоторые из них:
♦	многополюсные;
♦	программируемые;
♦	стандартные с заданным током.
Многие из них используют серебряно-кадмиево-оксидные контакты, которые выдерживают ток до 800 А. Большинство управляют работой ламп накаливания, балластными газоразрядными и другими осветительными приборами большой мощности (рис. 4.17).
Рис. 4.17. Контактор для осветительных приборов А-200
124
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
Некоторые предназначены для систем тревожной сигнализации, подъемников, светофоров, ирригационных систем, дверных замков. К большинству таких контакторов также имеется дополнительный набор, который содержит специальные обжимные контактные клеммы, подходящие для соединения и с медным, и с алюминиевым проводом.
Кнопочные выключатели и пульты
В управлении подачей питания используется несколько типов кнопок. Обычно, кнопочная станция снабжена двумя наборами контактов. Один в нормальном состоянии открыт, другой - закрыт. Это означает, что когда один набор замыкается, другой должен открыться, и наоборот. Кнопочные станции используются вместе с магнитными контроллерами. При этом они не обязательно должны быть расположены рядом с ними. Кнопки помогают функциями запуска, остановки, толчкового режима работы, реверса и т.д. Они предназначены также для использования в различных условиях и могут содержать световые индикаторы, ключи, висячие замки (рис. 4.18).
Рис. 4.18. Кнопочные выключатели и пульты
Концевые выключатели
Концевые выключатели, подобно кнопочным, обычно используются вместе с магнитными пускателями. Одним из основных различий между ними является
Типы устройств управления
125
то, что концевые выключатели часто используются для преобразования движения механических устройств в электрические управляющие сигналы (рис. 4.19).
Рис. 4.19. Концевые выключатели
Описываемые компоненты очень популярны и выполняют огромное количество управляющих операций. Они используются на производственных линиях для их остановки, запуска, увеличения и уменьшения скорости.
Концевые переключатели состоят из внутренних контактов, подвижной механической части и корпуса. Иногда концевые выключатели не заменяют, а ремонтируют. Внутренние контакты изнашиваются, и обычно приходится искать новые. Подвижная механическая часть, состоящая из консоли приводного механизма, рычага, плунжера или ролика, также со временем приходит в негодность или ломается.
Типы концевых выключателей:
♦	с толчковым движением;
♦	качающиеся;
♦	с проволочным потенциометрическим датчиком;
♦	рычажные;
♦	с пружинным возвратом;
♦	внутренние.
Многие из них залиты эпоксидной смолой для защиты от загрязнений и жидкостей.
Барабанные переключатели
Барабанные переключатели широко используются в промышленности. Они осуществляют коммутацию больших токов и обычно представляют собой трехполюсные переключатели с ручным управлением, которые используются для реверса
126
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
однофазных и трехфазных двигателей. Некоторые барабанные переключатели имеют до 16-ти полюсов и 7-ми перекидных рычагов (рис. 4.20).
Рис. 4.20. Барабанный переключатель и внутреннее расположение его частей
Когда барабанный переключатель используется для управления трехфазным двигателем, необходимо поменять местами два или три вывода внутреннего переключателя. Это легко выполняется с помощью диаграммы соединений на корпусе переключателя. Типовые корпуса барабанных переключателей непроницаемы для воды и масла.
Таймеры
В операциях управления двигателями используется большое количество таймеров:
♦	интервальные;
♦	импульсные;
♦	процентные;
♦	циклические.
Пневматический таймер, показанный на рис. 4.21, представляет собой реле времени, которое срабатывает благодаря изгибу воздушной диафрагмы. Игольчатый клапан управляет натеканием обратного потока воздуха в частично откачанную камеру. Когда диафрагма возвращается в исходное положение с одинаковым давлением с обеих сторон, контакты срабатывают.
После этого схема включается или выключается в зависимости от того, используются ли нормально разомкнутые или замкнутые контакты. Рабочий диапазон пневматических таймеров составляет от 1/20 с до 3 мин. Для
Рис. 4.21.
Пневматическое реле времени
Типы устройств управления
127
защиты от пикового напряжения может использоваться ограничитель выбросов при переходных процессах. Многие пневматические таймеры заменяются полупроводниковыми, которые предоставляют возможность программируемого задания времени и функции счетчика.
Электронные приводы
Электронные приводы представляют собой промышленные системы управления, предназначенные для обеспечения регулирования скорости двигателей (рис. 4.22).
Рис. 4.22. Электронный привод для двигателей
Типичные функции электронных приводов:
♦	пуск/остановка;
♦	вперед/назад;
♦	непрерывный/прерывистый режим работы;
♦	автоматический/ручной и др.
Привод содержит микропроцессор с множеством заданных вариантов регулирования скорости, торможения, вращающего момента и действий при перегрузке. Обычно устройство снабжается цифровым дисплеем для индикации различных отклонений: чрезмерного тока, замыкания на землю, неадекватного напряжения, неверного выполнения функций и т.д.
Программируемые контроллеры
Программируемые контроллеры, которые часто называют также логическими, являются наиболее сложными приборами для управления двигателями
128
Г ЛАВА 4. Сервисное обслуживание промышленных устройств управления
и представляют специализированные компьютеры на основе микропроцессоров (рис. 4.23). До внедрения программируемых контроллеров для выполнения тех же функций использовалось огромное количество реле и переключателей.
Рис. 4.23. Программируемый контроллер
Программируемые контроллеры обеспечивают множество преимуществ: гибкое программирование, цифровой дисплей индикации отклонений от заданных режимов, возможность распечатки материалов, замки с ключом для обеспечения безопасности, возможность записи на магнитные носители. В последующих главах программируемые контроллеры будут рассмотрены более подробно.
Датчики
Использование датчиков в производственной сфере, и особенно непосредственно в производстве, резко возросло. Существующие типы датчиков:
♦	фотоэлектрические;
♦	с использованием термопары;
♦	кристаллические;
♦	расстояния;
♦	приборы технического зрения;
♦	сложные цифровые оптоволоконные;
♦	цифровые датчики давления;
♦	устройства чтения штриховых кодов;
♦	лазерные;
♦	цифровые видеомикроскопы.
Датчики имеют очень много применений: регистрация деталей на сборочных линиях, измерения натяжения ремня вентилятора в автомобиле, измерения размеров изделий в соответствии со стандартом качества, измерения неравномерности песчаной формы при литье, подсчет числа выводов полупроводниковых
Ремонт и тестирование
129
микросхем, измерение эксцентриситета вала, проверка точности паяных соединений, измерение отклонения формы автомобильной шины и даже проверки отсутствия жевательной резинки в упаковке на производственной линии.
Одним из наиболее распространенных является оптоволоконный датчик, который со временем, кажется, становится более популярным, чем фотоэлектрический. Основное действие прибора заключается в движении светового луча по материалу с высоким показателем преломления, который называется сердечником, заключенному в материал с низким показателем преломления, называемый оболочкой. Изменение расстояния при измерении сенсором связано с длиной волокна. Правильная установка и выравнивание передатчика и приемника очень важны для эффективной работы прибора. Обычно датчики снабжены средствами настройки. Регулировка чувствительности может компенсировать неудобства места размещения и внешнее освещение.
Ремонт и тестирование
Обычно при поиске неисправностей управляющих схем двигателей используется замена устройств управления, внутренних деталей, измерение тока, напряжения и сопротивления.
Различные переключатели можно проверить с помощью омметра. Переключатель должен обеспечивать непрерывность цепи в одном положении и разрыв цепи в другом. Непрерывность или бесконечное сопротивление в обоих положениях переключателя означает, что переключатель неисправен. Если термореле перегрузки не сбрасывается или продолжает работать при нормальном токе. Реле, возможно, следует заменить. Прежде всего, имейте в виду, что мог иметь место неправильный выбор термореле. Кроме того, само термореле может быть исправно и правильно выбрано, но внутри реле сломаны детали.
Реле можно также проверить с помощью омметра. Начните с визуального контроля. Проверьте, нет ли обгоревших контактов или обуглившихся катушек. Если вы вручную замкнете реле, омметр должен показывать или непрерывность или обрыв, в зависимости от того, замкнуты или разомкнуты контакты данного реле в нормальном состоянии. Омметр должен показывать непрерывность в одном направлении и обрыв в другом. Кроме того, следует проверить общее сопротивление обмотки. В зависимости от размера катушки ее сопротивление не должно быть нулевым. О Ом означает, что произошло короткое замыкание. Бесконечное сопротивление означает, что произошел обрыв. Аналогично, если при подаче питания на катушку, она не втягивает якорь, то, вероятно, произошел обрыв.
Ручные и магнитные пускатели можно легко проверить с помощью осмотра контактов (рис. 4.24).
Если вы видите грязь, деформацию, заметили, что компоненты стали пористыми, их следует заменить. Большинство контактов можно очистить доступными растворителями и восстановить с помощью напильника.
Щ Никогда не обрабатывайте напильником серебряные контакты!
130
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
Рис. 4.24. Магнитный пускатель в разобранном виде
Грязные, клейкие пускатели, катушки и другие приборы следует поместить в более подходящий корпус. Хотя для очистки контрольно-измерительного оборудования иногда используется горячая мыльная вода, авторы не рекомендуют подобный метод. Есть много очень хороших очищающих растворителей, которые больше подходят для этой цели.
Если терморелереле перегрузки срабатывает при нормальном токе или не сбрасывается после срабатывания, его необходимо заменить. Кроме того, убедитесь, что внутри реле перегрузки нет сломанных деталей. Это тоже может вызывать подобную неисправность.
Проверьте также пускатель на слабые соединения и на наличие механических повреждений. Замените сломанные провода или контакты компонентами того же типа. Помните, что если контактор или магнитный пускатель располагается слишком далеко от контрольно-измерительного прибора, то это может увеличить импеданс управляющей схемы и отрицательно отразиться на функциональных характеристиках пускателя. Поэтому лучше, чтобы расстояние между контакторами и приборами было минимально.
Когда вы ищете неисправности реле перегрузки, проверьте, отпускает ли катушка контакты. Уточните температуру окружающей среды. Может быть, необходимо заменить катушку большей. Никогда не воспринимайте что-либо как само собой разумеющееся. Другие факторы, которые следует учесть, если катушка продолжает работать при перегрузке:
♦	показатель уровня обслуживания двигателя;
♦	толчковый режим работы при включении;
Ремонт и тестирование
131
♦	длительное время разгона;
♦	перегрузка двигателя;
♦	пониженная частота вращения.
Любой их этих факторов может заставить двигатель потреблять больший ток, чем при нормальном режиме работы для заданной мощности.
Проверьте, держатся ли контакты при срабатывании. Отрицательный результат может означать слишком низкое напряжение. Если контакты быстро изнашиваются, проблема может заключаться в коротком замыкании, низком напряжении, плохих контактах, наличии посторонних объектов или аномальном выбросе напряжения. Имейте в виду возможность неправильного использования пускателя оператором! Чрезмерное усилие при пользовании быстро изнашивает контакты. Если при тестировании не обнаружено никаких неисправностей схемы или питания, проверьте еще раз и подтяните механические соединения, замените контакты и пружины. Контакты продолжают быстро изнашиваться? Тогда, может быть, следует выбрать более мощный пускатель.
Обычными проблемами при проверке магнитных пускателей оказываются грязные и липкие детали, изношенные и слабые контакты, неисправные средства защиты от температурной перегрузки, поврежденные или изношенные механические части и т.д.
Например, если магнитная катушка не втягивает якорь, это может быть следствием неисправности катушки, использования несоответствующей катушки, низкого напряжения, неполной схемы управления, нарушения непрерывности соединений или каких-то механических поломок.
С другой стороны, когда магнитная катушка перегревается, проверьте ее на наличие соответствующего напряжения и тока. Причиной может быть неподходящая катушка или оператор неправильно пользуется пускателем.
Если катушка не отпускает якорь, проверьте ее расположение и убедитесь в отсутствии в пускателе загрязнения или смолы, несоответствующих напряжений или токов, спекшихся контактов или механических повреждений. Шум при работе магнитного пускателя может быть связан с поломкой экранирующей катушки, низким напряжением или любым видом загрязнения или коррозии.
Когда при срабатывании магнитного пускателя начинают возникать перегрузки, проверьте на возможное короткое замыкание или замыкание на землю. Может быть, необходимо заменить средства защиты от перегрузки.
Если возникает дребезг контактов, проверьте на низкое напряжение или неисправные контакты. Любой вариант неправильного использования пускателя оператором или загрязнения в рабочей области могут вызвать преждевременную его поломку.
Типичными проблемами пневматических таймеров являются нестабильная выдержка времени и несрабатывание контактов. Проверьте рабочий механизм на наличие посторонних объектов, которые могут задерживать таймер. Проверьте настройку привода для корректировки синхронизации. В других случаях можно заменить головку таймера, переключатель или катушку. На рис. 4.25 показан типичный трехфазный двигатель 240 В со схемой управления 120 В (низкого напряжения).
132
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
Здесь трансформатор с плавким предохранителем обеспечивает низкое напряжение для более безопасной работы. Если двигатель не реагирует на нажатие кнопки запуска, сначала проверьте, что реле перегрузки сброшено. Если реле установлено, проверьте плавкий предохранитель трансформатора на целостность. Проверьте каждый предохранитель в блоке прерывателей, устройства контроля перегрузки, главную панель.
Если найден сгоревший предохранитель, рекомендуется определить причину происшествия. Для этого проверьте двигатель на замыкание на землю, короткое замыкание, плохие контакты, возможное попадание внешних объектов и загрязнение. Проверьте средства управления двигателем на слабые контакты и наличие перегрева катушек.
Когда двигатель не активируется при нажатии кнопки запуска, вручную толкните якорь магнитного устройства. В случае положительного исхода, проверьте целостность кнопочного пульта, плавкого предохранителя линии передачи,
Ремонт и тестирование
133
магнитную катушку, контакты, провода к линии передачи магнитного устройства управления и т.д. Проблема должна заключаться в неисправном компоненте или слабом контакте. Разделите и протестируйте каждый каскад цепи для определения первопричины поломки.
Сгоревший плавкий предохранитель, замените другим с таким же номиналом. При необходимости используйте компонент с меньшим номиналом, но никогда не следует устанавливать с большим.
Двигатель запускается, но не останавливается при нажатии кнопки остановки, ищите дефектный, неправильно или плохо припаянный провод, ведущий к переключателю. Проверьте кнопочный пульт. Может быть, контакт кнопки заржавел или изношен, что не позволяет ему правильно функционировать. Проверьте все провода на возможные дефекты и целостность.
Если двигатель работает с меньшей, чем нужно, скоростью, или гудит, но не вращается, проверьте фазы на наличие обрыва в одной из них. Начните с измерения напряжения в каждой фазе двигателя. После того как вы определили место, где возник обрыв, пройдите по схеме, отслеживая напряжение до места, где напряжение нормальное. Слабое соединение или сломанный провод могут быть причиной такой проблемы.
Все фазы имеют правильное напряжение? Тогда проверьте двигатель на замыкание на землю и короткое замыкание с помощью мегомметра. Короткозамкнутый двигатель может вести себя так же, как и в случае с обрывом в одной из фаз.
Если оператор жалуется на шумную работу двигателя, попробуйте изолировать причину явления, выяснив, вызвана ли она двигателем или пускателем. Щелчки или гул в пускателе могут означать сломанную экранирующую катушку, грязные или изношенные контакты, испачканные органы управления, механически изношенный или неправильно расположенный якорь, низкое напряжение. Когда шум исходит из двигателя, это может означать, что подшипники истратили ресурс, изогнут вал, и приводить к чрезмерной вибрации вследствие ослабленного крепления основания двигателя.
Энергосиловая машина продолжает вызывать отключение магнитного устройства защиты от перегрузки? Измерьте ток на выводах двигателя, для того чтобы проверить, не чрезмерен ли поток заряженных частиц. Может быть, двигатель закорочен, или срабатывание защиты от перегрузки может вызываться частичным закорачиванием или замыканием на землю. Еще одна причина - слабые контакты.
Не упускайте из вида очевидное. Излишняя влага, грязь, тепло, коррозия и другие загрязнители могут вызывать отключение по перегрузке или сгорание предохранителей.
Если встречаются расплавленные контакты, это может быть вызвано несколькими причинами: аномальным током, постоянно низким напряжением, слишком быстрым толчковым режимом работы, загрязнением контактов.
Начните с проверки контактов на наличие загрязнителей. Прочистите их при необходимости, используя очищающие растворители. Несоответствующие напряжения могут возникать при замыкании на землю, коротком замыкании,
134
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
перегрузке. Вы можете заменить контакты, пружины, якорь. Возможно, придется заменить весь контактор.
Другие факторы могут вызвать нагрев и проблемы с двигателем, в том числе постоянный толчковый режим работы (повторяющиеся запуск и остановка) и торможение противотоком (быстрая остановка двигателя при мгновенном включении его в другом направлении). Неправильные действия оператора также являются фактором, который следует принимать во внимание.
Если двигатель не работает и возникает подозрение в неисправности трансформатора, можно использовать различные методы его диагностики: визуально проверить на наличие обугленной, сгоревшей изоляции или обмоток. Закороченный трансформатор будет горячим на ощупь и издавать неприятный запах. Обмотки можно проверить с помощью омметра, нулевое сопротивление может означать короткое замыкание. Обрыв в обмотках будет давать бесконечную величину сопротивления. Для проверки характеристик трансформатора можно также использовать вольтметр. Если регистрируется правильное напряжение на первичной обмотке, а на вторичной - неправильное, то в трансформаторе, возможно, произошел обрыв. Убедитесь, что выводы трансформатора не ослаблены. Этот фактор также может означать обрыв.
Типичными неисправностями электронных приводов и контроллеров с программируемой логйкой являются ошибки в обмотках, проблемы с линией питания, неисправности двигателя и механики, контроллеров. Пошаговые процедуры поиска дефектов описаны в сервисной документации производителей. При этом используются осциллографы, логические импульсные пробники и индикаторы, цифровые ампервольтомметры и т.д. (рис. 4.26).
Рис. 4.26. Использование логического пробника и индикатора тока для поиска неисправностей программируемого контроллера
Начните с тщательной проверки всех проводов и соединений. Убедитесь в правильности напряжения питания, исправности проводников, средств защиты от перегрузки, соблюдении требований к изолирующему трансформатору.
Профилактическое техническое обслуживание
135
Проверьте двигатель. Помните о стандартных неполадках проводки, замыкании на землю, обрыве, коротком замыкании, неправильной установке.
Никогда не используйте мегомметр для проверки двигателя, если он подключен к контроллеру, это может привести к повреждению. Всегда имейте в виду очевидные механические проблемы: защемления, чужеродные объекты, разломы и др.
Обычный термин, связанный с обслуживанием программируемых контроллеров, это ошибка периферийного устройства. Периферийнымиустройствамииъ-зываются все внешние приборы и оборудование, подключенное к контроллеру: реле, переключатели, кнопки, провода.
Операторы сразу обвиняют контроллер, в то время, как неисправность чаще всего связана с периферийным устройством, потому как если не сработает любое из них, то не сработает и контроллер. Кроме того, вибрация, интенсивные переходные процессы, дребезг и нагрев могут привести к ложному срабатыванию контроллера, что потребует перепрограммирования.
Например, если двигатель привода не запускается, проверьте разъединители и плавкие предохранители, чтобы убедиться в правильности напряжения сети. Протестируйте катушку торможения, соленоиды, фиксаторы, диодные или выпрямительные сборки, термореле, внешние устройства защиты от перегрузки и автоматические выключатели.
Если реле или автоматический выключатель необходимо сбросить, то прежде чем это сделать, проверьте двигатель на короткое замыкание и замыкание на землю. Измерения выходных сигналов контроллера часто выполняются с помощью цифровых омметров с зажимами, цифровых ампервольтомметров, ручных тахометров, осциллографов. Поиск неисправностей программируемых логических контроллеров и связанных с ними устройств будет рассмотрен в следующих главах.
Профилактическое техническое обслуживание
Общепризнанно, что срок службы устройств управления двигателем зависит от типа технического обслуживания и условий работы. Грязные, липкие устройства нужно очистить жесткой щеткой и растворителем. Если управляющее оборудование необходимо подвергнуть воздействию воды, после этого его обязательно следует высушить перед началом использования. Для подтверждения правильной изоляции катушек проверяйте их с помощью омметра или мегомметра.
Контроллеры необходимо периодически проверять на наличие изношенных частей, слабых соединений, недостаточно упругих пружин. Грязные, подвергшиеся коррозии медные или покрытые кадмием контакты рекомендуется чистить и обтачивать для сохранения надлежащей формы. Серебряные контакты не следует обрабатывать напильником. Нарушения формы или цвета обычно не препятствуют работе.
136
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
Для предотвращения поломок вследствие чрезмерного трения может понадобиться смазка двигателей и устройств управления. Однако обычно пускатели не смазывают, поскольку на смазке скапливается пыль и другие загрязнители, которые вызывают износ устройства. Большинство двигателей требуют периодической очистки, смазывания или замены подшипников.
Большинство кожухов для водяного охлаждения необходимо периодически промывать и заменять для предотвращения образования коррозии. Кроме того, должен обеспечиваться соответствующий уровень масла, также необходимо постоянно проверять давление масла или воздуха для выявления возможных утечек.
Здравый рассудок и небольшой уход помогут предотвратить многие отказы и поломки устройств управления. Следите за тем, чтобы защитные детали были надежно закреплены, не допускайте изнашивания ремней, органов управления, потрескавшихся, обугленных или хрупких проводов. Такие провода необходимо заменить.
Если нельзя заменить весь провод, можно нарастить новую секцию. При замене используйте точно такой же провод и убедитесь, что электрические и механические соединения надежны. Выполните пайку или используйте соединительные клеммы. Наконец, убедитесь, что соединения хорошо изолированы специальной лентой или проходными изоляторами.
Электронные приводы и программируемые контроллеры, хотя и являются износостойкими устройствами, чувствительны к температуре, влажности, химикатам, влаге, другим неблагоприятным влияниям окружающей среды. Регулярно проводите техническое обслуживание каждого устройства в соответствии с руководствами изготовителей.
Вопросы для самоконтроля
Выберите наилучший ответ:
1.	Изменение направления тока в катушке:
а)	не меняет полярности магнита
б)	разрушает катушку;
в)	изменяет полярность;
г)	ничего из перечисленного.
2.	Простейший вид устройства управления двигателя:
а)	тумблер;
б)	магнитный переключатель;
в)	барабанный переключатель;
г)	реле.
3.	Иное название магнитного пускателя:
а)	ручной переключатель;
б)	контактор;
в)	ручной пускатель;
г)	магнитное устройство управления.
Вопросы для самоконтроля
137
4.	Какой тип устройства защиты от перегрузки содержит специальный сосуд:
а)	с плавящимся сплавом;
б)	биметаллический;
в)	магнитный;
г)	плавкий предохранитель.
5.	Какой тип устройства защиты от перегрузки использует принцип электромагнетизма:
а)	с плавящимся сплавом;
б)	биметаллический;
в)	магнитный;
г)	плавкий предохранитель.
6.	Обнаружено, что сгорел плавкий предохранитель, но на замену нет такого предохранителя, а есть предохранители 10 и 30 Следует использовать: а) плавкий предохранитель 10 А;
б)	плавкий предохранитель 30 А;
в)	любой из перечисленных;
г)	плавкий предохранитель 40 А.
7.	Низкое напряжение часто приводит к тому, что устройство управления: а) засоряется;
б)	работает более эффективно;
в)	щелкает;
г)	ничего из перечисленного.
8.	Быстрая остановка двигателя с помощью мгновенного включения двигателя в обратном направлении называется:
а)	толчковое движение;
б)	медленное вращение;
в)	торможение;
г)	последовательная работа.
9.	Горячий, дымящийся трансформатор означает:
а)	обрыв в схеме;
б)	короткое замыкание;
в)	оба: «а» и «б»;
г)	ничего из перечисленного.
10.	Короткозамкнутый двигатель вызывает:
а)	малый ток;
б)	большой ток;
в)	оба: «а» и «б»;
г)	ничего из перечисленного;
11.	Ручной трехфазный пускатель иногда используется для включения и выключения двигателя до:
а)	5 л.с.;
б)	10 л.с.;
в)	15л.с.;
г)	20 л.с.
138
ГЛАВА 4. Сервисное обслуживание промышленных устройств управлении
12.	Прибор, который используется для управления двигателем на расстоянии, называется:
а)	магнитный пускатель;
б)	барабанный переключатель;
в)	выключатель мгновенного действия.
13.	Какое из перечисленных понятий является характерным для таймера:
а)	интервал;
б)	импульс;
в)	процент;
г)	все перечисленные.
14.	Прибор, который контролирует поток воздуха обратно в камеру пневматического реле времени, это:
а)	диафрагма;
б)	игольчатый клапан;
в)	экранирующая катушка;
г)	все перечисленное.
15.	Если двигатель работает, но не останавливается, проблема может заключаться в следующем:
а)	сгорел предохранитель;
б)	возникло замыкание в держателе;
в)	произошла перегрузка вследствие слишком частого толчкового режима и торможения противотоком;
г)	ничего из перечисленного.
16.	Если двигатель работает с недостаточной скоростью или не работает и гудит, что нужно искать в магнитном пускателе?
а)	обрыв фазы;
б)	сварившиеся между собой элементы подвижной части;
в)	оба: «а» и «б»;
г)	ничего из перечисленного.
17.	Повторяющийся пуск и остановка двигателя называется:
а)	шаговый режим;
б)	толчковый режим;
в)	фазирование;
г)	большое время разгона.
18.	Щелчки или гул в магнитном контакторе может быть связан с тем, что:
а)	сломана экранирующая катушка;
б)	контакты грязные или изношенные;
в)	оба: «а» и «б»;
г)	ничего из перечисленного.
19.	Какие из следующих контактов не следует обрабатывать напильником:
а)	покрытые кадмием;
б)	покрытые серебром;
в)	оба: «а» и «б»;
г)	ничего из перечисленного.
Вопросы для самоконтроля
139
20.	Увеличение нагрева двигателя может быть вызвано:
а)	длительным толчковым режимом;
б)	повторным включением;
в)	повторяющимся торможением;
г)	обоими «а» и «б»;
д)	ничего из перечисленного.
21.	Системы управления бывают двух типов: с замкнутым контуром и:
а)	одним контуром;
б)	двумя контурами;
в)	разомкнутым контуром;
г)	управляющим контуром.
22.	Прежде чем обсуживать двигатель или устройство промышленного назначения, специалист по поиску неисправностей должен:
а)	отключить питание;
б)	проверить проводку;
в)	провести обслуживание контроллера;
г)	заменить предохранитель.
23.	Концевой выключатель состоит из трех частей:
а)	контакты, рычаг, подшипник;
б)	привод, переключатель, магнит;
в)	привод, барабан, таймер;
г)	контакты, подвижная механическая часть и корпус.
24.	Барабанный переключатель может содержать до:
а)	3 полюсов;
б)	6 полюсов;
в)	8 полюсов;
г)	16 полюсов.
25.	ПЛК называют:
а)	схему логической обработки;
б)	устройство управления с программируемой логикой;
в)	контроллер логической обработки;
г)	схему с программируемой логикой.
26.	Одной из наиболее типичных проблем программируемых устройств управления являются:
а)	ошибки соединений;
б)	неисправности в линии питания;
в)	неправильная работа двигателя;
г)	все перечисленное.
27.	Никогда не следует проверять двигатель, соединенный с программируемым устройством управления с помощью:
а)	мегомметра;
б)	омметра;
в)	тахометра;
г)	осциллографа.
140
ГЛАВА 4. Сервисное обслуживание промышленных устройств управления
28.	Ручной тестовый инструмент для проверки выходных сигналов контролера это:
а)	амперметр с зажимами;
б)	мегомметр;
в)	тахометр;
г)	осциллограф.
29.	Если реле перегрузки программируемого устройства управления размыкается, то рекомендуется проверить двигатель на:
а)	замыкание на землю.
б)	обрыв;
в)	короткое замыкание;
г)	все перечисленное.
30.	Обычно для обслуживания большинства программируемых контроллеров изготовитель поставляет:
а)	устройство управления для замены;
б)	тестовые инструменты;
в)	руководство по поиску неисправностей;
г)	ничего из перечисленного.
Вопросы и проблемы
1.	Перечислите основные функции устройства управления двигателем.
2.	Расскажите об основах теории прерывателя цепи.
3.	Что такое тумблер?
4.	Каковы преимущества магнитного пускателя по сравнению с ручным пускателем?
5.	Опишите характеристики магнитного пускателя.
6.	Что такое концевой выключатель?
7.	Расскажите о теории работы термореле перегрузки на основе плавящегося сплава.
8.	Расскажите о теории работы биметаллического термореле перегрузки.
9.	Расскажите о теории работы магнитного реле перегрузки.
10.	Что такое пневматический таймер?
11.	Как проверять реле?
12.	Перечислите различные методы проверки трансформатора.
13.	Какова правильная техника чистки катушек?
14.	Какова может быть неисправность двигателя, который вращается с половинной скоростью?
15.	Перечислите различные типы шума от двигателя и устройства управления двигателем. Каковы причины шума?
16.	Что такое экранирующая катушка?
17.	Дайте определение термина «толчковый режим».
18.	Дайте определение термина «торможение противотоком».
19.	Почему при операциях управления двигателем частб используется низкое управляющее напряжение?
Вопросы для самоконтроля
141
20.	Расскажите о техническом обслуживании и сервисе управляющих контактов двигателя.
21.	Что такое электронный привод?
22.	Что такое программируемое устройство управления?
23.	Перечислите функции электронного привода.
24.	Перечислите различные дефекты, которые индицируются на цифровом дисплее электронного привода.
25.	Перечислите различные характеристики программируемого устройства управления.
26.	Расскажите о типичных неисправностях программируемых устройств управления.
27.	Почему специалист по поиску неисправностей никогда не должен использовать мегомметр для проверки двигателя, если он соединен с программируемым устройством управления?
28.	Перечислите типичные тестовые инструменты для проверки программируемых устройств управления.
29.	Перечислите типичные проблемы, связанные с электронными приводами и программируемыми устройствами управления.
30.	Что следует проверить с помощью приборов, если электродвигатель с электронным приводом не запускается?
Сервисное обслуживание электропроводки бытового и промышленного назначения
Электропроводка предоставляет среду, посредством которой энергия передается к электрическим двигателям, устройствам управления, другому электрическому и электронному оборудованию. В этой главе даются общие сведения о проводке бытового и промышленного назначения, а также представлена методика поиска неисправностей. Кроме того, рассмотрены процедуры проверки и ремонта систем телевизионных кабельных сетей и систем освещения бытового и промышленного назначения.
Основные сведения
Большинство схем электропроводки состоит из четырех основных частей:
♦	источник питания;
♦	линия передачи;
♦	устройство управления;
♦	рабочее устройство.
Однофазные источники питания обычно содержат распределительный щит, который дает 120/240 В. Современные модели обеспечивают ток от 60 до 200 А. В распределительном щите каждая индивидуальная цепь подключена к линии с фазным напряжением и к нейтральной линии заземления (рис. 5.1).
На распределительном щите цепь фазы обычно выполняется из черного или красного провода, если напряжение составляет 240 В. Нейтральный провод обычно белый, а зеленый выполняет роль предохранительного приспособления и заземления. Плавкие предохранители или прерыватели защищают линию
Основные сведения
143
Однофазная трехпроводная сеть 120 В
120 В
Однофазная трехпроводная сеть 120/240 В
~Г“ 120 В ч-120 В
240 В
Рис. 5.1. Пример источника питания 120 и 240 В с трансформатором
фазы от перегрузок. Нейтральная сторона почти всегда подключена к земле путем соединения этого провода с заземляющим стержнем или водопроводной трубой с холодной водой, в зависимости от местных правил (рис. 5.2).
Устройство, которое называется заземлением оборудования, состоит из монтажного провода, который соединен с нейтральным выводом на распределительном
Рис. 5.2. Схема распределительного щита
144
ГЛАВА 5. Сервисное обслуживание электропроводки
щите (общая земля), с металлической приемной коробкой и третьим отверстием в розетке. Возьмем, к примеру, дрель. Она должна иметь вилку с двумя или тремя штырями и пружинящими контактами, соединенными проводом с металлическим корпусом инструмента (рис. 5.3).
Рис. 5.3. Распределительный щит, розетка, и ручная дрель, демонстрирующие применение провода заземления
Если при работе с дрелью происходит замыкание на землю, ток пойдет не через оператора, а через этот провод заземления назад к источнику. Если защитное заземление не предусмотрено, ток с фазной линии может пойти через заземленную дрель, оператора и назад в заземление на землю (рис. 5.4).
Системы заземления защищают операторов и оборудование. Программируемые устройства управления и компьютеры особенно чувствительны к замыканию на землю. Приборы более подвержены замыканию на землю, если они работают в среде с высокой влажностью, например в подвалах и на расположенных под открытым небом объектах: на промышленном складе или на цокольном этаже с влажным полом оператор и оборудование в большей степени подвержены риску замыкания на землю.
Специалист по обслуживанию не должен думать, что третий штырь вилки всегда защищает оборудование и оператора. Нередко цепь провода заземления имеет обрыв. В старых промышленных установках очень часто встречаются розетки с незаземленными контактами. Даже если розетка снабжена заземлением, это не гарантирует защиту во влажных и сырых помещениях ни оператору, ни оборудованию.
Основные сведения
145
Путь тока на землю
Рис. 5.4. Примеры заземленной и незаземленной схемы
Для защиты двигателей, устройств управления и другого промышленного оборудования были разработаны усовершенствованные программируемые технологии. Рис. 5.5 показывает программируемое устройство, спроектированное для защиты больших и дорогостоящих двигателей. Оно предохраняет не только
Рис. 5.5. Программируемое устройство защиты двигателя
146
ГЛАВА 5. Сервисное обслуживание электропроводки
Рис. 5.6. Типичное устройство защитного отключения
от замыкания на землю, но и от заклинивания, перегрузок, неравенства фазных напряжений, других проблем питания и нагрузки.
Менее дорогостоящие средства защиты от замыкания на землю называются устройствами защитного отключения (УЗО). На рис. 5.6 показан типичный бытовой выключатель УЗО. Прерыватель похож на размыкатель цепи, но защищает схему от замыкания на землю. Он срабатывает, как только небольшой ток начинает течь на землю.
Большинство систем электропроводки, расположенных в жилых зданиях, обычно используют провод № 14 для тока 15 А, № 12 для тока 20 А, №10 для тока 30 А, № 8 для тока 40 А, и № 6 для тока 55 А.
Максимальная мощность оборудования 20 А общего назначения составляет 2400 Вт, а для цепи 15 А - около 1800 Вт (при напряжении 120 В). Общее потребление одновременно включенных устройств не должно превышать возможностей сети питания. При расчете схем бытовой проводки обычно предполагается, что на каждые 35 м2. площади необходимо обеспечение 15 А. Розетка должна быть
доступна каждые 3,6 м по длине стены. Обычно оборудование мощностью 8000-18 000 Вт должно иметь отдельную проводку 240 В (40 А). Электрический нагреватель воды (2000-4000 Вт) требует отдельной цепи 240 В (40 А). В кухнях обычно предусматриваются две или три отдельные цепи 20 А для электрических устройств. Часто одна цепь общего назначения 15-20 А может обеспечить две
спальни и ванную.
Используется три основных типа кабеля: с неметаллическим чехлом, гибкий армированный кабель и тонкостенная металлическая трубка, которую часто
Рис. 5.7. Однополюсный переключатель, управляющий работой лампы
Основные сведения
147
называют просто трубкой. Она обычно выпускается секциями по 3 м и может иметь разные размеры: 25 мм с четырьмя проводами № 14 или тремя проводами № 12; 20 мм с четырьмя проводами № 10 или пятью проводами № 12 и т.д. Существуют различные типы труб: тонкостенные, пластмассовые, неупругие. Неметаллические кабели подразделяются по назначению для помещений и для внешних соединений. Обычно в схемах переключения используются однополюсные схемы и схемы на три или четыре направления (рис. 5.7).
Переключатель на три направления регулирует питание одной или более ламп из двух мест. В положении, показанном на рис. 5.8, лампа выключена, а при повороте любого переключателя лампа загорится. Для этой схемы необходима трехпроводная линия между переключателями.
Рис. 5.8. Переключатель на три направления, управляющий работой лампы
Руководит работой одной или более ламп из трех мест переключатель на четыре направления (рис. 5.9). Здесь для соединения также необходим трехпроводный кабель. Кроме того, средний переключатель должен работать на четыре направления. Если нужно обеспечить управление более чем из трех мест, просто добавляйте переключатели на четыре направления.
Четырехпроводная система состоит из трех фаз, которые имеют одинаковое напряжение, и четвертого провода заземления, который используется для защиты и уменьшения напряжения. На рис. 5.10 показаны системы с соединением «треугольником» и «звездой», которые обычно используются в школах, офисах и промышленности.
148
ГЛАВА 5. Сервисное обслуживание электропроводки
Рис. 5.9. Переключатель на четыре направления, управляющий работой лампы
Соединение звездой, три фазы, четыре провода 120/208 В
Соединение треугольником, три фазы , четыре провода 120/240 В
Рис. 5.10. Схемы соединения звездой и треугольником
Ремонт цепей электропроводки
149
Ремонт цепей электропроводки
К числу обычных неисправностей, которые возникают в цепях электропроводки бытового и промышленного назначения, относятся обрывы, замыкание на землю, короткое замыкание и проблемы коэффициента мощности. Обрыв, замыкание на землю и короткое замыкание уже были рассмотрены ранее, а трудности, связанные с коэффициентом мощности, более характерны для промышленных сетей и силовых устройств переменного тока. Типичной проблемой, возникающей в трехфазных системах промышленного назначения, является низкий коэффициент мощности. Любой тип цепей или устройств переменного тока с реактивным сопротивлением индуктивного типа - нагреватели, лампы, двигатели, устройства управления - вызывает запаздывание нарастания синусоидальной полуволны тока относительно полуволны напряжения, которое выражается в процентах и часто изменяется в пределах 30-90%, при этом второй показатель наиболее приемлем по сравнению с первым. Коэффициент мощности представляет собой косинус фазового угла между напряжением и током. При низком коэффициенте мощности потребляется большой ток, это неэкономично и дорого, а также увеличивает нагрев. Скорректировать его можно при помощи добавления в схему параллельно подключенной емкости (рис. 5.11).
Рис. 5.11. Корректировка низкого коэффициента мощности за счет добавления конденсатора
Коррекция коэффициента мощности обычно выражается в единицах, называемых «ВАР» (вольт-ампер-реактивный) или килоВАР и осуществляется за счет добавления конденсаторов, которые уменьшают разность фаз между напряжением
150
ГЛАВА 5. Сервисное обслуживание электропроводки
и током в схеме. Поэтому двигатель с коррекцией коэффициента мощности рассеивает меньше энергии в варах, что снижает потери и затраты.
На рис. 5.11 обратите внимание, что блок конденсаторов имеет плавкий предохранитель для дополнительной защиты на каждой линии. Это делается на случай, если один из конденсаторов будет закорочен. Между конденсаторами установлены резисторы утечки для разряда конденсаторов после выключения устройства и уменьшения риска электрического удара. Заметьте, что конструктивно сами конденсаторы могут размещаться на входе источника питания, двигателе или перед нагрузкой двигателя.
При поиске неисправностей систем электропроводки попробуйте сначала ориентироваться с помощью чувств. Если размыкатель просто сработал, но не сбросился, подумайте, что могло вызвать этот эффект. Может быть, кто-то просто включил устройство и вызвал этим перегрузку в цепи. Чувствуете ли вы необычные запахи? Откуда эти странные звуки? Проверьте систему на наличие трещин, обугленных элементов, запахов, механических поломок и т.д.
Если в системе электропроводки есть блок плавких предохранителей, проверьте основные с помощью вольтметра.
На рис. 5.12 демонстрируется метод локализации сгоревшего предохранителя в однофазной системе. Когда выводы вольтметра подключены к линии (справа вверху), по показаниям прибора мы можем видеть, что напряжение есть. Когда вольтметр подключен к контактам после плавких предохранителей (слева вверху) и нет индикации, мы знаем, что предохранитель сгорел. Последний предохранитель проверяется таким же образом.
Рис. 5.12. Проверка плавких предохранителей в однофазной системе
В трехфазной системе предохранители можно проверить вольтметром или омметром таким же образом, как они тестируются в однофазной системе (рис. 5.13).
Ремонт цепей электропроводки
151
Сгоревший Показывает величину, предохра- меньшую напряжения линии
Сгоревший предохранитель
Рис. 5.13. Проверка плавких предохранителей в трехфазной системе
Другим прибором, который часто используется для проверки после завершения установки бытовой проводки, является тестер розеток (рис. 5.14). Он индицирует типичные неисправности цепей: обрыв фазы, обрыв нейтрального проводника, фазный и нейтральный провода перепутаны, изменение порядка подключения фаз.
Рис. 5.14. Тестер розеток
Обычными неисправностями в промышленных электросетях являются короткие замыкания и обрыв провода, а также замыкание провода на металлическую оболочку (трубку). Используя рис. 5.15 в качестве примера типичной промышленной цепи, мы рассмотрим поэтапную процедуру поиска неисправностей.
Проверьте:
1.	Подачу питания с линии на основной распределительный щит.
2.	Наличие грязи, плохого прижима контактов или сгоревших предохранителей. Качество блока размыкателей: нет ли там изношенных или подвергшихся коррозии ножей, дефектных плавких предохранителей, неправильно работающих приводных механизмов.
3.	Устройство управления двигателем и провода, ведущие к устройству и от него. На слабые, ненадежные контакты, грязь, масло, закороченные обмотки и т.д.
152
ГЛАВА 5. Сервисное обслуживание электропроводки
Рис. 5.15. Типовая промышленная электросеть
4.	Непрерывность цепи от блока размыкателей до устройства управления двигателем с помощью омметра. Если в устройстве управления двигателем есть напряжение и оно работает правильно при подаче питания, мы можем точно сказать, что дефект должен находиться между устройством управления и двигателем.
5.	Проводку между устройством управления двигателем и распределительной коробкой на обрыв в схеме, короткое замыкание или замыкание на землю. В нашем примере мы обнаружили, что провода в трубке имеют обрыв и замкнуты на трубку.
6.	Соединительную коробку, на слабые соединения, соединительные клеммы, , зажимы провода внутри коробки и т.д. на наличие влаги, грязи, масла.
7.	После восстановления, исправность линии между распределительной коробкой и электродвигателем.
8.	Действие кнопочного переключателя и двигателя.
Таким простым и логичным способом мы можем выявить неисправность.
Помните, что если кабель вызывает сгорание предохранителей или срабатывание размыкателя без нагрузки, а все устройства управления были проверены, значит, кабель закорочен.
В таком случае лучше воспользоваться преимуществами, которые дает трубка. Старые закороченные провода можно легко вытянуть из нее и вставить другие, используя моток гибкой стальной проволоки. Если неметаллический кабель требует замены, то, вероятно, сделать это будет сложно, не вскрывая стены,
Ремонт цепей электропроводки
153
если вообще возможно. Вытаскивая неметаллический поврежденный кабель, прикрепите к нему новый и тяните его внутрь, по мере того, как вытягиваете старый. Трубка также механически прочнее и лучше защищает медный провод. Именно поэтому вся наружная проводка должна выполняться с применением трубок.
Если в цепи используется устройство защитного отключения, то необходимо проследить все ответвления, проверив их на наличие влаги и/или короткозамкнутые или замкнутые на землю провода. Основное преимущество прерывателей защитного отключения заключается в том, что они могут спасти жизни и предотвратить травму за счет автоматического отключения подачи энергии. Они могут сработать под воздействием влажности различного происхождения -и это их недостаток. Например, очень часто прерыватель срабатывает в жаркую, дождливую погоду или во время ливня, хотя никакой угрозы не возникло. Другой недостаток заключается в том, что даже если прерыватель сработал, через него может пройти выброс напряжения (пусть даже длительностью в микросекунды), который может нанести удар человеку, в результате существенно возрастает риск травмы. Это может быть особенно опасно для того, кто работает на высоко расположенной подставке. Другой защитный прибор, в сочетании с изолирующим трансформатором, может устранить этот недостаток прерывателя замыкания на землю.
Для проверки сопротивления изоляции трехфазных распределительных кабелей можно использовать мегомметр. Тестируйте провода по очереди, подключая мегомметр к одной линии, соединив и связав две другие вместе и заземлив их (рис. 5.16). Сравните показания омметра с требованиями стандарта кабеля, зависящими от его размера, длины и условий работы.
Кроме ремонта кабеля, может потребоваться замена или восстановление механически поврежденной или обуглившейся изоляции. Эта ситуация наиболее часто встречается, когда в наличии нет конкретного изолятора.
Другой способ поиска неисправностей систем проводки заключается в поочередном отключении секций цепи. С использованием мегомметра или омметра отследите прохождение сигнала в системе от точки к точке, отсоединяя по одной части схемы по очереди, до тех пор, пока не обнаружите короткое замыкание, обрыв или замыкание на землю (рис. 5.17).
Рис. 5.16. Проверка сопротивления изоляции с помощью омметра
Рис. 5.17. Процедура поиска неисправностей в проводке промышленного назначения
154
ГЛАВА 5. Сервисное обслуживание электропроводки
Например, для того чтобы выявить замыкание на землю, сначала отсоедините двигатель в точке С и проверьте напряжение в линии с помощью мегомметра. Затем отсоедините устройство управления двигателем и проверьте напряжение. После этого проверьте распределительный щит.
Каждый специалист по поиску неисправностей в промышленном оборудовании сталкивается с разнообразными распределительными щитами, блоками размыкателей, другими заключенными в корпус средствами проводки и управления. Проблемы, связанные с ними, обычно заключаются в некачественных соединениях, сломанных проводах, коррозии контактов, неисправных плавких предохранителях или размыкателях.
Визуальное тестирование позволит выявить большинство механических неисправностей оборудования. Проверьте, нет ли признаков загрязнения, сломанных проводов или разъемов. Советуем вам воспользоваться специальным диагностическим оборудованием. Однако помните, что если размыкатель не сбрасывается, часто срабатывает или функционирует нечетко, его следует заменить.
В крупных системах распределения электроэнергии иногда используется комбинация размыкателя цепи с видимыми изолированными контактными ножами, который называется «выключателем цепи». Этот прибор основан на пружинном механизме и вакуумном прерывателе для обеспечения полной защиты от фазового сверхтока, фазовых потерь и замыканий.
В блоках размыкателей есть очень надежный переключатель, расположенный на фланце с рукояткой для остановки подачи энергии от двигателей, насосов, устройств управления и др. Однако, если все же произошла поломка, проверьте на наличие неисправностей приводной механизм, сломанную или
Рис. 5.18. Трехфазная проводка промышленного назначения и корпус распределительной панели
Ремонт систем освещения
155
отсоединившуюся пружину или соединительное звено, изношенную, или подвергшуюся коррозии нажимную пластину или держатель плавкого предохранителя.
Корпуса распределительных щитов, блоков размыкателей и др. могут быть механически испорчены, подвергнуться коррозии под воздействием атмосферы, быть повреждены химическими соединениями, маслом, влагой, грязью и пр. Исправьте незатянутые соединения, закороченные провода, некачественные гибкие соединители, механические повреждения, удалите коррозию.
На рис. 5.18 показан пример корпуса промышленного устройства управления. Обратите внимание на аккуратное расположение и состояние проводов и соединений.
Провода должны иметь длину, обеспечивающую не слишком тугое и в то же время не чересчур свободное соединение, что позволит предотвратить возможные проблемы: короткое замыкание или отсоединение. Собирая кабель в электрических коробках, оставляйте 15 см для гибкого соединения, обычно выполняемого с помощью пластмассовых клеммных разъемов .
Ремонт систем освещения
Системы освещения бытового и промышленного назначения часто требуют обслуживания. Вот некоторые типы стандартных ламп:
♦	накаливания;
♦	флуоресцентные;
♦	газонаполненные;
♦	ртутные;
♦	газоразрядные;
♦	высокого и низкого давления и др.
Лампы накаливания (которые обычно и называются электрическими), как правило, используются в жилых зданиях. Типичной их проблемой является треснутый патрон, низкое напряжение, которое значительно уменьшает эффективность, (яркость) лампы. И основная проблема, с которой необходимо бороться, -вибрация. Именно это явление чаще всего приводит к обрыву вольфрамовой нити.
Существует несколько типов флуоресцентных осветительных систем: с предварительным нагревом и быстрого включения. Первый из рассматриваемых типов требует вспомогательного запускающего переключателя, при активации которого дроссель стартера обеспечивает пусковой ток для предварительного нагрева электродов флуоресцентной лампы. Через несколько секунд пускатель срабатывает и лампа загорается.
К числу обычных проблем ламп с предварительным нагревом относятся мигание и неспособность загореться. Эти неполадки могут возникать из-за сломанного гнезда, неправильной установки, низкого напряжения, грязи, ошибок в проводке, неисправной лампы, дросселя или пускателя. Наиболее часто встречаются низкое напряжение, грязные лампы или неисправный пускатель.
156
ГЛАВА 5. Сервисное обслуживание электропроводки
Лампы быстрого и мгновенного включения отличаются от описанных выше тем, что не требуют пускателя. Дроссель имеет встроенную обмотку, которая обеспечивает необходимый ток. Типичной проблемой этих компонентов является то, что при загрязнении, особенно в условиях высокой влажности, лампа не загорается, а мигает. В таких случаях осветительный прибор необходимо прочистить или заменить. Другие проблемы заключаются в сломанном гнезде, низком напряжении, неправильной проводке или неисправном дросселе.
Ртутные газонаполненные лампы обычно используются в промышленности и обеспечивают яркое освещение, но требуют постоянного и надежного источника питания. При скачках напряжения лампа не работает, затем в течение 5-10 мин охлаждается, чтобы вернуться к прежней яркости. Слабые места подобных устройств: низкое напряжение, перебои в подаче питания, неисправные трансформаторы.
Лампы высокого давления работают аналогично ртутным и газонаполненным и также требуют надежного постоянного источника напряжения, достаточного времени, чтобы охладиться перед повторным включением. Проблемы: несоответствующее напряжение, перебои в подаче питания, неисправные лампы и дроссели.
Ремонт распределенных систем телевидения
Область радиосвязи и телевидения продолжает развиваться. Появляются все новые технологии: спутниковые системы бытового и коммерческого назначения, устройства медицинской телеметрии, цифровое радиовещание, усовершенствованные распределенные системы антенн.
Этот сегмент технического обслуживания можно освоить, если понять принципы работы и поиска неисправностей распределенной системы антенн.
Антенна - первичный компонент системы, отвечающий за прием сигнала.
Предусилитель, который располагается в корпусе антенны, повышает качество приема сигнала.
Распределительный усилитель используется для усиления сигнала до уровня, достаточного для хорошего приема.
Рис. 5.19. Полупроводниковый распределительный усилитель, предназначенный для усиления сигналов VHF и UHF
Ремонт распределенныхсистем телевидения
157
Например, на рис. 5.19 показан однокаскадный распределительный усилитель для использования в средних и больших системах кабельного телевидения с приемом на общую антенну и телевидения с использованием главной антенны.
Он характеризуется регулятором коэффициента усиления, настраиваемым высокочастотным фильтром, максимальной стабильностью сигнала. Разветвитель разделяет сигналы и отправляет их в линию передачи. Самые распространенные ти-
Рис. 5.20. Разветвитель на два направления для разделения и согласования сигналов коаксиальной линии 75 Ом
пы данных компонентов - на 2 и 4 направления (рис. 5.20).
Ответвитель используется для направления части сигнала от основной линии к приемнику.
Два основных типа описываемых устройств - это линейный и промежуточный
ответвитель.
Линейный ответвитель монтируется на стене около телевизионного приемника. Он обеспечивает разделение выходных каналов так, что приемники не
влияют друг на друга, предотвращая размытость и паразитное изображение.
Промежуточный ответвитель используется,
Рис. 5.21. Направленный линейный промежуточный ответвитель на один телеприемник
когда несколько телеприемников расположены на большом расстоянии от основной линии. Он ведут сигнал непосредственно к телевизору, что упрощает установку (рис. 5.21).
Устройства согласования предназначены для обеспечения соответствия сигналов от антенны телевизионным приемникам. Существует несколько различных типов устройств согласования. Например, если используется отдельная антенна МВ (метровых волн) и ДМВ (дециметровых волн), то устройство согласования предназначено для трансформирования этих от
дельных сигналов в единый выходной сигнал при выходном сопротивлении 75
или 300 Ом, что устраняет необходимость тянуть две отдельных линии к телеприемнику. Устройства согласования часто устанавливаются на антенне или на
чердаке.
Фильтры используются для ослабления определенных сигналов (частот), устраняя наложение сигналов. Любительский диапазон радиочастот и диапазон ЧМ нередко накладываются друг на друга. Большинство фильтров FM предназначены для ослабления частотно модулированных сигналов в диапазоне 88-108 МГц. Для фильтрации нежелательных частот используются также аттенюаторы.
Антенна представляет собой проводник, который принимает электромагнитные волны, возбуждающие ток соответствующей частоты. Ее длина и резонансный эффект непосредственно связаны с частотой и длиной волны: длина антенны обратно пропорциональна частоте. Для измерения коэффициента усиления,
158
ГЛАВА 5. Сервисное обслуживание электропроводки
потерь или качества изоляции антенны и кабелей используется единица децибел (дБ).
Децибел- это соотношение двух напряжений (точнее, логарифм отношений), входного и выходного напряжения системы антенна/кабель. Тысяча микровольт эквивалентны одному дБ при относительном напряжении 1 мВ.
В качестве антенного провода используют, в основном, коаксиальный кабель 75 Ом и двухпроводный 300 Ом. Он имеет круглое сечение и стоит дороже, чем двухпроводный кабель, идеален для прохождения через трубы, защищен от погодного влияния, имеет хорошую экранировку от внешних помех и защиту от интерференции.
Есть два основных типа двухпроводного кабеля - стандартный плоский и цилиндрический с пенным наполнителем.
Первый двухпроводный кабель дешевле, но не так устойчив к плохим погодным условиям, как кабель с наполнителем. Никакой двухпроводной кабель не дает достаточной защиты от помех и интерференции.
На рис. 5.22 показана распределенная система на 82 канала и 96 телевизионных приемников. Эта система иллюстрирует использование разделителей, линейных ответвителей, усилителя, источника питания, предусилителя и антенны. Нагрузочные резисторы используются для предотвращения возникновения отраженной волны в линии передачи.
Нагрузочные резисторы
Рис. 5.22. Телевизионная система с главной антенной для комплекса жилых зданий
Ремонт распределенных систем телевидения
159
Более совершенные антенные системы обеспечивают прием цифровых спутниковых сигналов, качественный прием видеосигналов, CD-звук и возможность доступа к сотням каналов.
Например, мобильная цифровая спутниковая система Winegard имеет антенну из стали с покрытием методом горячего цинкования с защитой от ультрафиолетового излучения и влияния погодных условий. Различные типы спутников включают мобильные системы с ручным и автоматическим цифровым наведением и переносные домашние установки с дополнительными наборами.
Чтобы гарантировать корректную работу распределенных систем телевидения следует помнить о нескольких правилах. Антенна должна быть хорошего качества и обладать хорошей коррозионной устойчивостью. Она должна быть надежно установлена для обеспечения правильной ориентации.
Если антенна неверно направлена, она может плохо принимать сигнал или будут возникать паразитные изображения из-за того, что волна отражается от различных объектов, например больших зданий.
Отраженный сигнал фактически несколько задерживается. Он поступает в антенну вскоре после основного сигнала и оказывается слегка смещенным вправо на телевизионном экране. Для устранения этой проблемы необходимо перенаправить антенну или установить более узконаправленную антенную систему. Другой вариант: попробуйте установить антенну поменьше, ту, что имеет высокий коэффициент обратного излучения, но среднее значение коэффициента усиления.
Антенна должна устанавливаться вдали от деревьев, металлических и крупногабаритных объектов, например, на чердаке или крыше. Однако помните, что теплоизоляция на подложке из алюминиевой фольги и металлические кровельные материалы могут ослабить сигнал.
Основная причина проблем устройства для излучения и приема электромагнитных волн заключается в коррозии под воздействием осадков. Антенну следует заменить, если очевидна потеря сигнала.
Пробой изоляции, вызванный неблагоприятными условиями погоды, - главная причина неполадок распределительных линий.
Линию передачи можно проверить омметром. Кроме того, используя небольшой телевизор или монитор, можно проследить прохождение сигналов в антенне шаг за шагом.
Распределительную линию можно также проверить с помощью замены ее заведомо исправным кабелем. Помните, что короткое замыкание в коаксиальном кабеле не всегда вызывает короткое замыкание в схеме. Закороченный кабель часто действует как фильтр, очевидно, вследствие наличия активного сопротивления по постоянному току и собственной индуктивности, образовавшейся при коротком замыкании. На телевизионном приемнике могут возникать необычные эффекты: исчезновение цвета на одном канале при сохранении его на других, или только некоторые из подключенных к общей антенне приемников начинают принимать более слабый сигнал, чем остальные. Обрыв в коаксиальном
160
ГЛАВА S. Сервисное обслуживание электропроводки
кабеле может также вызвать странные результаты: потерю четкости или паразитное изображение, плохой прием или отсутствие сигнала. Помните, что предусилитель может только усилить сигнал, принятый антенной. Он не может расширить диапазон или усилить сигнал, поступающий к антенне.
Неаккуратная установка распределительной сети может привести к плохому приему, паразитному изображению или потере четкости изображения. Некоторые проблемы возникают потому, что на конце цепи не установлен нагрузочный резистор, кабель защемлен скобами крепления, делает резкие изгибы, что создает несоответствия импеданса и вызывает слабые или плохие соединения.
Когда исправный телевизор дает изображение с помехой типа «снег», причина должна заключаться в слабом сигнале. Для хорошего, чистого, контрастного приема обычно необходим сигнал 0 дБмВ, что соответствует 1000 мкВ. Обычная проблема большинства систем заключается в том, что к антенне подключены слишком много телевизионных приемников без достаточного усиления сигнала. Каждый телевизор ослабляет сигнал. Кроме того, если распределительный кабель слишком длинный, сигнал также ослабеет. Например, 30-метровый коаксиальный кабель вызывает потерю около 6 дБ на канале 14. Это соответствует приблизительно двукратному ослаблению сигнала 1000 мкВ, необходимого для хорошего изображения.
Обслуживая или устанавливая антенную систему, важно вычислить мощность сигнала для использования наиболее подходящего усилителя. Для обеспечения должного уровня сигнала при проектировании системы необходимо также учитывать возможные потери.
В областях, где возникает нежелательный шум при приеме, попробуйте использовать фильтр для ослабления ненужных частот. В регионах с очень сильными сигналами ЧМ может помочь заграждающий фильтр. При необходимости, специалист по поиску неисправностей может соединить несколько заграждающих фильтров в виде нескольких каскадов.
Главной угрозой для антенн являются молнии, которые часто попадают в антенну, вызывая множество проблем: обрыв линии передачи, предусилителе, разветвителе и других компонентах. Обычно предусилитель, который расположен в корпусе антенны, снабжен защитным диодом, который уменьшает риск наиболее серьезных проблем. Молниезащита и заземленные стержни также могут уменьшить вероятность возникновения более серьезных неисправностей.
Профилактическое техническое обслуживание
Идеальная программа профилактического технического обслуживания должна состоять из периодической проверки всей распределительной системы, распределительных коробок и приборов. Для регистрации всех неисправностей необходимо вести журнал учета.
Прежде всего обращайте внимание на устройства управления с повышенным уровнем шума и настраивайте их. Грязные, липкие, влажные линии, устройства управления двигателем, распределительные коробки следует периодически чистить. Регулярно проверяйте напряжение в линии. Значения этого параметра не должны отличаться от заданных более чем на 10%.
Вопросы для самоконтроля
161
В жаркие летние дни, когда могут возникать проблемы, связанные с низким напряжением. Подразделение, занимающееся техническим обслуживанием должно попытаться отключить все менее важные осветительные приборы, двигатели и другое оборудование. Низкое напряжение заставляет двигатели потреблять больше тока, что в свою очередь приводит к выделению большего тепла. В результате это разрушает кабели, двигатели и другое оборудование.
Необходимо регулярно проверять температуру окружающей среды около данного устройства. Аномально высокие показатели вызывают поломки и могут стать косвенной причиной пожаров, поскольку жара увеличивает ток и вызывает пробои изоляции. В то же время мороз может вызвать образование трещин.
Полупроводники очень чувствительны к изменениям температуры вне пределов допустимых величин. Неблагоприятная погода может разрушить диоды, транзисторы, тиристоры и другие полупроводниковые устройства. Убедитесь, что они снабжены адекватным охлаждением и не подвергаются чрезмерному воздействию тепла.
Следует избегать работы приборов при несоответствующих физических или механических условиях без крайней необходимости, поскольку это создает реальную опасность для оператора, а также может стать причиной преждевременного выхода оборудования из строя. Найдите способы уменьшения или устранения вибрации, механического перемещения, воздействия внешних материалов и загрязнения.
Вопросы для самоконтроля
Выберите наилучший ответ:
1.	В настоящее время в жилых домах используются распределительные коробки, обеспечивающие ток как минимум:
а)	30 А;
б)	60 А;
в)	100 А;
г)	150 А;
д)	200 А.
2.	Нейтральный общий провод обычно имеет цвет и под-
ключается к
а)	красный, трубе холодного водоснабжения;
б)	белый, к размыкателю цепи или плавкому предохранителю;
в)	черный, к размыкателю цепи или плавкому предохранителю;
г)	белый, трубе холодного водоснабжения;
д)	красный, к размыкателю цепи или плавкому предохранителю.
3.	Провод № 8 обычно используется для:
а)	15 А;
б)	20 А;
в)	30 А;
г)	40 А;
д)	60 А.
162
ГЛАВА S. Сервисное обслуживание электропроводки
4.	Другое название тонкостенной металлической трубки для проводов:
а)	неметаллический кабель;
б)	гибкий металлический кабель;
в)	трубка;
г)	армированный кабель;
д)	ничего из перечисленного.
5.	Другое название гибкого стального кабеля:
а)	трубка
б)	тонкостенная металлическая трубка;
в)	синтетический кабель;
г)	неметаллический кабель;
д)	ничего из перечисленного.
6.	Переключатель на 4 направления позволяет руководить работой лампы из мест:
а)	1;
б)	2;
в)	3;
г)	4;
д)	5.
7.	Коэффициент мощности индуктивной реактивной схемы можно увеличить за счет добавления:
а)	конденсаторов;
б)	индукторов;
в)	катушек индуктивности;
г)	плавких предохранителей;
д)	ничего из перечисленного.
8.	Устройство для протягивания провода через трубку называется:
а)	проволочные клещи;
б)	скоба;
в)	разъем;
г)	проволока для протаскивания электропроводов через трубы;
д)	ничего из перечисленного.
9.	Наилучший способ проверки сопротивления изоляции заключается в использовании:
а)	вольтметра;
б)	омметра;
в)	амперметра;
г)	мегомметра;
д)	всех перечисленных приборов.
10.	Для уменьшения уровня сигнала в пунктах с очень сильным сигналом используется:
а)	разделитель;
б)	усилитель;
в)	ответвитель;
г)	новая антенна;
д)	аттенюатор.
Вопросы для самоконтроля
163
11.	Какая из следующих ламп использует пускатель:
а)	лампа с предварительным нагревом;
б)	лампа быстрого запуска;
в)	лампа мгновенного запуска;
г)	все перечисленные.
12.	Какая из следующих ламп требует определенного периода времени для охлаждения перед повторным запуском:
а)	лампа накаливания;
б)	флуоресцентная;
в)	ртутная газонаполненная;
г)	никакая из перечисленных.
13.	Устройство для ослабления специальных сигналов это:
а)	промежуточный ответвитель;
б)	линейный ответвитель;
в)	разветвитель;
г)	заграждающий фильтр.
14.	Провод с экраном это:
а)	плоский двухпроводный;
б)	двухпроводный с пенным наполнителем;
в)	коаксиальный;
г)	все перечисленные.
15.	Какой из следующих проводов имеет импеданс 75 Ом:
а)	плоский двухпроводный;
б)	двухпроводный с пенным наполнителем;
в)	коаксиальный;
г)	никакой из перечисленных.
16.	Прибор для предотвращения отражения сигнала в линию передачи называется:
а)	заграждающий фильтр;
б)	линейный ответвитель;
в)	предусилитель;
г)	нагрузочный резистор.
17.	Причина размытого изображения и паразитного изображения заключается в:
а)	обрыв в линии передачи;
б)	неправильно расположенная антенна;
в)	одновременный прием прямого и отраженного сигналов;
г)	все перечисленные.
18.	Предусилитель обычно устанавливается:
а)	на телевизионном приемнике;
б)	на антенне;
в)	на чердаке или стене;
г)	ничего из перечисленного.
19.	Прибор для увеличения уровня сигнала называется:
а)	линейный промежуточный ответвитель;
б)	усилитель;
164
ГЛАВА 5. Сервисное обслуживание электропроводки
в)	аттенюатор;
г)	заграждающий фильтр.
20.	Максимальная емкость для схемы общего назначения составляет около:
а)	1500 Вт;
б)	1800 Вт;
в)	2400 Вт;
г)	2800 Вт.
Вопросы и проблемы
1.	Расскажите о типах кабеля, которые обычно используются в проводке бытового и промышленного назначения.
2.	Расскажите о действии переключателей на три и четыре направления.
3.	Расскажите о приборах для заземления и его применении.
4.	Каковы различия напряжений между трансформаторными системами энергоснабжения с соединениями звездой и треугольником?
5.	Объясните функции программируемого устройства защиты двигателя.
6.	Перечислите недостатки прерывателя замыкания на землю.
7.	Расскажите о методах, используемых при поиске неисправностей электропроводки.
8.	Укажите причины, по‘которым на экране телевизора может иметь место помеха типа снег.
9.	Расскажите о воздействии температуры на работу приборов.
10.	Расскажите о процедурах технического обслуживания, которые следует выполнять при работе в сфере производства.
И. Объясните, как на экране телевизора образуется двойное изображение.
12.	Что можно сделать для ослабления сильного сигнала FM?
13.	Расскажите о стандартных неисправностях антенн и кабельной сети.
14.	Какова разница между коаксиальным кабелем и двухпроводным кабелем?
15.	Сколько микровольт требуется для качественной, чистой картинки на экране телевизора?
16.	Опишите, что может случиться, если в коаксиальном кабеле возникает короткое замыкание.
17.	Каковы возможные последствия обрыва в коаксиальном кабеле?
18.	Объясните разницу между линейным и промежуточным ответвителем.
19.	Что такое аттенюатор?
20.	Какова цель использования разветвителя?
21.	Расскажите о преимуществах использования коаксиального кабеля
22.	Расскажите о разнице между стандартным плоским двухпроводным кабелем и трубчатым двухпроводным кабелем с пенным наполнителем.
23.	Что такое децибел?
24.	Какова разница между усилителем и предусилителем?
25.	Для чего используются нагрузочные резисторы?
Сервисное обслуживание радио- и телевизионной аппаратуры
Радиоприемник представляет собой электронный прибор, который принимает электромагнитные сигналы из окружающего пространства, усиливает их, выделяет необходимую часть и воспроизводит звук. Приемник должен соответствовать типу модуляции передатчика: амплитудная модуляция (AM), частотная модуляция (ЧМ), с разделением каналов, стерео и т.д.
Телевизионная аппаратура является отдельной областью приемопередающей электроники, в которой применяются сложные технологии. Передача и прием изображений - это настоящий подвиг, если говорить о черно-белом телевидении, и просто чудо, если говорить о цветном. В этой главе мы рассмотрим некоторые принципы сервисного обслуживания радио и телевизионных приемников.
Основные сведения об амплитудной модуляции
То, что мы привыкли называть радиоволнами, представляет собой колебание электромагнитной энергии. Эти волны распространяются со скоростью 300 миллионов метров в секунду, причем каждая имеет определенную длину. Чем меньше частота, тем длиннее волна, чем выше частота, тем короче волна. Колебания воздуха имеют частоту в пределах 20 Гц до 20 кГц, их могут слышать большинство людей. Волны с большей частотой недоступны для человеческого слуха. Однако ультразвуковые колебания могут излучать и воспринимать некоторые животные.
Поскольку физический размер антенны пропорционален длине волны, использование этого устройства для приема и передачи электромагнитных колебаний в звуковом диапазоне может быть непрактичным. Поэтому высокочастотная
166
ГЛАВА 6. Сервисное обслуживание радио- и телевизионной аппаратуры
волна, выработанная генератором, смешивается с низкочастотной звуковой волной. При этом образуется модулированная волна, которая используется для транспортировки информации от передатчика к приемнику. На рис. 6.1 показан принцип амплитудной модуляции, при котором информация, то есть сигнал низкой звуковой частоты, изменяет амплитуду сигнала-носителя. Амплитудно-моду-лированная волна представляет собой комбинированный сигнал носителя, а также верхней и нижней боковой полосы частот.
Звуковая волна
шл
Несущая волна

Рис. 6.1. Две волны, которые образуют модулированную волну радиочастоты
Большинство схем AM являются супергетеродинными приемниками благодаря наличию внутреннего генератора (гетеродина) и каскада смесителя (рис. 6.2). Антенна принимает сигналы многих частот в заданном диапазоне. Входной избирательный контур, который состоит из переменного конденсатора и катушки, выделяет нужную частоту и передает сигнал этой частоты в смеситель.
Y 4Н
Усилитель высокой частоты
МИшМИШТ Усилитель
ЭДПпКш промежуточной частоты
Схема автоматической регулировки усиления (АРУ)
Рис. 6.2. Блок-схема приемника AM
Основные сведения о частотной модуляции
167
В каскаде смесителя входные сигналы радиочастоты смешиваются с сигналом генератора (гетеродина) с постоянной амплитудой, который имеет частоту (обычно) на 465 кГц (это обычная промежуточная частота) выше, чем входной сигнал. С выхода смесителя комбинация этих сигналов проходит через колебательный контур, настроенный на 465 кГц.
Предположим, что входной контур настроен на прием сигнала 1000 кГц и промежуточная частота равна 465 кГц. При этом гетеродин автоматически настраивается на величину 1465 кГц, в результате чего образуется промежуточная частота 465 кГц, представляющая собой разность между входной частотой 1000 и 1465 кГц. Имейте в виду, что, хотя частота 465 встречается наиболее часто в диапазонах длинных (ДВ) и средних (СВ) волн, многие приемники имеют другие промежуточные частоты. Следующая стадия обработки сигнала - один или несколько (до трех) каскадов усиления промежуточной частоты. Каждый каскад усиления промежуточной частоты может содержать фильтр, настроенный на соответствующую промежуточную частоту для улучшения избирательности. Функция детектора заключается в отделении звуковых колебаний, несущих полезную информацию, от несущей промежуточной частоты. Он делает это в два этапа. Сначала происходит детектирование смешанного сигнала, при этом сначала выпрямляется верхняя положительная полуволна AM сигнала. Затем промежуточная частота отфильтровывается на землю через шунтирующий конденсатор, и далее проходит только низкочастотный звуковой сигнал. Схема автоматической регулировки усиления (АРУ) благодаря наличию обратной связи с использованием части выходного сигнала и воздействия на коэффициент усиления ВЧ каскадов, поддерживает относительное постоянство сигнала, то есть громкость звука на выходе приемника.
Звуковой сигнал от детектора поступает на усилитель звуковой частоты. Здесь звуковой сигнал достигает мощности, достаточной для приведения в действие динамик.
Основные сведения о частотной модуляции
Технология передачи с использованием частотной модуляции (ЧМ) начинается с несущей волны радиочастоты и волны звуковой частоты, называемой модулирующим сигналом. Когда несущая радиочастота модулируется звуковым сигналом, частота несущей радиоволны изменяется вместе с амплитудой модулирующего сигнала (рис. 6.3).
Блок-схема приемника ЧМ показана на рис. 6.4. Антенна принимает сигналы ЧМ в пределах своего диапазона частот, а входной избирательный контур выбирает конкретный диапазон частот. Усилитель высокой частоты делает прием сигнала ЧМ более уверенным. Местный генератор (гетеродин) вырабатывает радиочастотный сигнал постоянной амплитуды, который смешивается с сигналом ЧМ, образуя промежуточную частоту. Каскады промежуточной частоты обычно настроены на 465 кГц. Один или более каскадов промежуточной частоты пропускают и усиливают сигнал промежуточной частоты.
168
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной аппаратуры
(С)
Рис. 6.3. Принцип частотной модуляции - звуковая волна смешивается с несущей волной, создавая изменения частоты
Рис. 6.4. Блок-схема приемника ЧМ
Детектор ЧМ отличается от детектора AM. Детектор ЧМ должен выделить модулирующую низкочастотную составляющую промежуточной частоты. Затем выделенный звуковой сигнал подается через схему компенсации предыскажений. Эта схема восстанавливает амплитудно-частотную характеристику сигнала. В передатчике высокие частоты звукового сигнала еще больше усиливаются -это называется предыскажением - для улучшения отношения сигнал/шум при передаче. Поэтому в приемнике необходимо проделать обратную процедуру.
Основные сведения о частотном разделении каналов
169
После коррекции предыскажений звуковой сигнал усиливается каскадом усиления низкой частоты для подачи на динамик. Обратите внимание на наличие каскада автоматической регулировки частоты (АРЧ), который поддерживает правильную настройку гетеродина приемника.
Некоторые части схемы AM могут быть использованы в приемнике ЧМ. На рис. 6.5 показана блок-схема комбинации приемника AM и ЧМ. Когда вы переключаетесь с AM на ЧМ, одновременно включаются все схемы, предназначенные только для этого режима работы.
Рис. 6.5. Блок-схема приемника АМ/ЧМ
Основные сведения о частотном разделении каналов
Когда вы слушаете стереорадиостанцию ЧМ, то через два динамика идут два совершенно отдельных звуковых канала (рис. 6.6). На радиостанции стереоразделение начинается с двух отдельных микрофонов для приема звуковых сигналов. Сигналы обозначены L (левый) и R (правый), в соответствии с положением микрофонов. Сигналы L и R подаются на стереокодер, который формирует два выходных сигнала. Один сигнал представляет собой сумму (L + R), а другой - разность (L - R).
170
ГЛАВА 6. Сервисное обслуживание радио- и телевизионной аппаратуры
Подавленная несущая 19 кГц, полученная из поднесущей 38 кГц
Поднесущая 38 кГц w
Рис. 6.6. Компоненты сигнала с разделением каналов
Несущая модулированного стерео сигнала с разделением каналов
Выход L - R представляет собой поднесущую частоту 38 кГц с амплитудной модуляцией, которая образует боковые полосы частот выше и ниже 38 кГц. Поднесущая 38 кГц затем подавляется после модуляции, оставляя только боковые полосы. Боковые полосы L - R подаются затем на передатчик ЧМ. Передатчик ЧМ частотно модулируется выходом L + RhL-Rh подавленной несущей 19 кГц. На рис. 6.7 изображена блок-схема стереопередатчика ЧМ. Обратите внимание на стереокодер.
К усилителям мощности и антенне
Рис. 6.7. Бок-схема стереопередатчика ЧМ
Основные сведения о частотном разделении каналов
171
Анализ частотного спектра несущей модулированного стереосигнала с разделением каналов показан на рис. 6.8. Обратите внимание, что нижняя часть частотного спектра содержит сигнал L + R для монофонических приемников (от 30 Гц до 15 кГц). Боковые полосы частот L - R с подавленной несущей (23-53 кГц) занимают верхнюю часть. Подавленная несущая 19 кГц также передается как часть комплексного сигнала для синхронизации и восстановления частоты 38 кГц в приемнике при демодуляции. Цель подавленной несущей заключается в уменьшении энергии в комплексном стереосигнале для оптимального отношения сигнал/шум.
Монофонический сигнал
Частота, кГц
Рис. 6.8. Спектр частот стерео ЧМ
Приемник при демодуляции композитного стереосигнала выполняет обратные операции по сравнению с передатчиком. Принимаемый комплексный стереосигнал состоит из сигнала L + R, боковых полос сигнала L - R и подавленной несущей 19 кГц. Если приемник не предназначен для приема сигнала с частотным разделением каналов, он воспримет только сигнал L + R и обработает его как монофонический сигнал.
Однако, если приемник имеет режим ЧМ стерео, сигнал L - R восстанавливается за счет смешивания боковых полос и несущей 38 кГц, после чего извлекается исходный сигнал L - R. Помните, что несущая 38 кГц вырабатывается в приемнике и использует подавленную несущую 19 кГц для синхронизации. Затем сигналы L + R и L - R обрабатываются стереодекодером, подобным стереокодеру передатчика.
В декодере сигналы L + R и L - R складываются для получения исходного сигнала L, а сигналы L + R и L - R вычитаются, в результате чего получается исходный сигнал R. Затем сигналы R и L усиливаются и подаются на соответствующие динамики.
Метод демодуляции с использованием боковых полос и стереодекодера показан на рис. 6.9.
После детектора три составляющих сигнала разделяются схемами фильтров. Сигнал L + R получается с помощью низкочастотного фильтра (30 Гц до 15 кГц) и затем проходит через схему задержки, чтобы он достиг стереодекодера в то же время, что и сигнал L - R. Фильтр высоких частот (23-53 кГц) выделяет двойной сигнал боковой полосы L - R. Узкополосный фильтр 19 кГц выделяет подавленную несущую и подает ее на усилитель, а затем на схему удвоителя, преобразующего
172
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной аппаратуры
Подавленная несущая
Рис. 6.9. Блок схема обработки боковых полос и матрицы демодуляции
сигнал в частоту 38 кГц. Выходной сигнал 38 кГц представляет собой точную копию подавленной несущей частоты с двумя боковыми полосами.
При пропускании сигнала L - R и сигнала 38 кГц через нелинейную схему демодулятора AM получаются суммы и разности сигналов, один из которых
Левый
Стереопроцессор
Рис. 6.10. Блок-схема матрицы
Основные сведения о частотном разделении каналов
173
представляет собой сигнал L - R (в диапазоне от 30 Гц до 15 кГц), выделенный низкочастотным фильтром. Сигналы L - R и L + R подаются на стереодекодер и обрабатываются, как показано на рис. 6.10.
Обратите внимание, что один канал складывает L+R и L - R и дает в результате сигнал L. Сигнал L - R проходит через фазовый инвертор, который изменяет знак L - R на -L + R. Сигналы L + R и - L + R складываются, формируя сигнал R. Сигналы R и L подаются на соответствующие усилители и затем на динамики.
Другой метод демодуляции заключается в электронном переключении (рис. 6.11).
Рис. 6.11. Блок-схема демодуляции с помощью электронного ключа и сигнал ЧМ
Поступающий от детектора сигнал проходит через схему восстановления поднесущей частоты и затем подается на электронный переключатель. На рисунке также показан сигнал, который подается на переключатель, который переключает положительные и отрицательные полуволны комплексного звукового сигнала и демодулирует стереосигнал . Комплексный звуковой сигнал включает сигнал L + R, L - R и подавленную несущую 19 кГц (рис. 6.12).
174
ГЛАВА 6. Сервисное обслуживание радио* и телевизионной аппаратуры
Рис. 6.12. Схема стереодекодера с электронным переключением
Подавленная несущая 19 кГц усиливается и подается на удвоитель частоты (CR1 и CR2), что позволяет регенерировать поднесущую 38 кГц. Сигнал поднесущей затем смешивается со звуковым сигналом для восстановления комплексного стереосигнала. Мостовая переключающая схема, состоящая из CR3, CR4, CR5, CR6, управляется за счет смены полярности полуволн напряжения поднесущей 38 кГц; при этом два плеча моста проводят по очереди. Таким образом, положительная и отрицательная составляющая комплексного стереосигнала квантуется частотой 38 кГц и на выходах моста присутствуют демодулирован-ные сигналы L и R.
Рис. 6.13. Двухтактный усилитель
Основные сведения о частотном разделении каналов
175
Магнитофоны, проигрыватели компакт-дисков (CD), стереопроигрыватели и другое звуковое оборудование требуют одного или более усилителей для увеличения сигнала таким образом, чтобы его можно было слышать в динамике (рис. 6.13).
Транзистор Q1 служит предварительным фазоразделительным каскадом для двухтактного усилителя. Конденсатор С1 - разделительный, препятствующий прохождению постоянной составляющей сигнала и передающий сигнал от каскада предусиления на фазоразделительный транзистор.
Конденсатор С2 и резистор R1 представляют собой эмиттерную RC-цепь, которая обеспечивает режим смещения транзистора по постоянному и переменному току. Трансформатор Т1 разделяет на 180° фазу сигналов, управляющих Q1 и Q3. Транзисторы двухтактного каскада усиливают сигнал по очереди, каждый свою полуволну, которые затем складываются на выходе. Конденсаторы С4 и С5 передают часть сигнала с коллектора назад на базу транзистора. Эта отрицательная обратная связь предотвращает переход транзисторов в колебательный режим и уменьшает искажения. Трансформатор Т2 согласовывает импеданс Q2 и Q3 с динамиком. Конденсаторы СЗ и С6 представляют собой емкостные фильтры для развязки каждого каскада от паразитных и нежелательных сигналов в линии питания.
Рис. 6.14. Схема усилителя с квазикомплементарной парой выходных транзисторов
176
ГЛАВА 6. Сервисное обслуживание радио* и телевизионной аппаратуры
Другой, бестрансформаторный тип двухтактного усилителя мощности, с комплементарной (или квазикомплементарной) парой транзисторов в выходном каскаде - наиболее популярный тип усилителя (рис. 6.14).
Верхняя пара п-р-п-транзисторов Q2, открыта, когда сигнал на выходе Q1 положительный, нижняя пара р-п-р транзисторов Q3 и Q5, открыта при отрицательном сигнале. Обе полуволны выделяются на нагрузке R^, обеспечивая двухтактную работу.
Более старое оборудование содержит схемы на дискретных транзисторах, как показано на этих рисунках. В современном оборудовании усилитель низкой частоты часто находится в одной интегральной микросхеме или залитом компаундом модуле. Поиск неисправностей в этих модулях заключается в проверке наличия питания на модуль и подаче на входы нужного сигнала. Если при этом нет выходного сигнала, модуль необходимо заменить. До сих пор выпускаются некоторые современные устройства, использующие дискретные транзисторные усилители для мощных выходных каскадов.
Основные сведения о телевизионных передатчиках и приемниках
Телевизионный передатчик фактически состоит из двух отдельных передатчиков. Видеосигнал, или сигнал изображения, амплитудно-модулирован несущей, а звуковой передатчик представляет собой систему ЧМ, очень похожую на систему радиовещания ЧМ. Поэтому передаваемый комплексный сигнал - это комбинация обоих принципов AM и ЧМ. Упрощенная блок-схема системы телевизионной передачи и приема показана на рис. 6.15.
Г ромкоговоритель
Рис. 6.15. Упрощенная схема телевизионной передачи
Телекамера действует как первичный преобразователь, который превращает световую энергию в электрическую, а трубка для вывода изображения (электронно-лучевая трубка - ЭЛТ) представляет собой преобразователь электрической
Основные сведения о телевизионных передатчиках и приемниках
177
энергии в свет. Микрофон и динамик являются соответствующими преобразователями для системы звука.
В телевизионной камере узкий электронный луч перемещается горизонтально по светочувствительной поверхности, вырабатывая пропорциональное свету напряжение. Так образуется строка развертки. Электронный луч проходит линию за линией 625 раз в секунду .
Телевизионный приемник должен иметь средства синхронизации полученных камерой сигналов. Поэтому передаваемый сигнал несет и синхроимпульсы.
Телевизор в действительности воспроизводит последовательность точек, которые выдаются с постоянно изменяющейся интенсивностью и скоростью. Наблюдатель видит эту последовательность как картинку на экране. Электронная пушка излучает поток электронов, направляемый электромагнитной системой и проходит слева направо и сверху вниз. Специальное фосфорное покрытие экрана светится при попадании на него электронов.
В телевидении используется чересстрочная развертка с наложением, при которой сканирование начинается в верхнем левом углу, проходит нечетные линии слева направо и завершает 312 линий (рис. 6.16).

1
264
2 265
3 266
4
Строки 5-238 первого полукадра и линии 267-500 второго полукадра не показаны здесь
263 1 264 2
265 3
266 4
Строки 242-262 и строки 505-525 не являются частью растрового изображения, они проявляются, когда луч выключается во время возвратного движения по вертикали
501
239
502
240
503
241
504
Рис. 6.16. Пример чересстрочной развертки
501
239 502
240 503
241
504
Луч возвращается с нижней части экрана назад в центр самой верхней части и завершает сканирование четных линий. Каждый набор четных или нечетных линий образует поле, а оба вместе образуют кадр. Поэтому в кадре 625 линий при частоте 25 кадров в секунду.
178
ГЛАВА 6. Сервисное обслуживание радио- и телевизионной аппаратуры
Каждый раз, когда сканирующий луч перемещается слева направо, он должен вернуться назад. Это называется обратным ходом строки. Когда сканирующий луч достигает нижней точки экрана, он должен быстро вернуться на верхнюю часть экрана. Это называется обратным ходом по кадру. В это время экран черный. Только во время сканирования видно изображение. Генератор развертки по вертикали с частотой 50 Гц отклоняет сканирующий луч вверх. Генератор горизонтальной развертки с частотой 15 625 Гц отклоняет сканирующий луч слева направо по экрану.
Каждый раз, когда сканирующий луч завершает строку, вырабатывается импульс с большой амплитудой, который синхронизирует каждую переданную линию с телевизионным приемником (рис. 6.17).
Рис. 6.17. Упрощенный вид видеосигнала, показывающий гасящие импульсы и импульсы горизонтальной развертки
Сигнал от антенны усиливается в каскаде высокой частоты, смешивается с заданной частотой генератора и передается на каскады промежуточной частоты 45,75 МГц, где он усиливается. Затем видеодетектор демодулирует сигнал и посылает звуковую составляющую часть сигнала на низкочастотные каскады, а видеосигнал на каскады обработки сигнала изображения. Выделяемый из видеосигнала звуковой сигнал ЧМ усиливается в УПЧ, демодулируется детектором ЧМ, после которого сигнал НЧ усиливается в УНЧ и подается на динамики. Видеосигнал в это время усиливается видеоусилителем и подается на управляющую сетку трубки (рис. 6.18).
Автоматическое управление усилением поддерживает постоянный уровень сигнала. Схема выделения сигналов синхронизации выбирает импульсы синхронизации по вертикали и горизонтали и подает их на схемы интегрирования
Основные сведения о телевизионных передатчиках и приемниках
179
Рис. 6.18. Блок-схема черно-белого телевизионного приемника
и дифференцирования. Интегрирующая схема формирует импульсы синхронизации по вертикали в виде серии импульсов пилообразного напряжения и подает их на генератор вертикального отклонения. Усилитель вертикального отклонения
180
ГЛАВА 6. Сервисное обслуживание радио- и телевизионной аппаратуры
управляет током вертикальной отклоняющей катушки и обеспечивает вертикальную развертку. Дифференцирующая схема формирует импульсы синхронизации по горизонтали и подает их на генератор горизонтальной развертки и схему автоматической подстройки частоты. Импульсы горизонтальной развертки выделяются схемой автоматической регулировки частоты (АРЧ). Они усиливаются и используются для управления горизонтальной отклоняющей катушкой, которая обеспечивает развертку по горизонтали.
Высокое напряжение, необходимое для работы электронной трубки, поступает от усилителя по горизонтали. Это напряжение повышается примерно до 30 кВ или более с помощью строчного трансформатора. Напряжение выпрямляется высоковольтным выпрямителем и подается на анод трубки. Демпфером служит диод, помещенный в цепи выброса обратного напряжения от катушки. Функция демпфера заключается в предотвращении выброса более одного раза.
Описание схемы современных телевизионных приемников различается в зависимости от производителя. Большинство используют микропроцессор, который взаимодействует со средствами управления и видеопроцессором. Многие видеопроцессоры содержат набор следующих функций:
♦	промежуточная звуковая и видеочастота;
♦	управление источником питания;
♦	схема выделения сигналов синхронизации;
♦	смесители и усилители узлов цвета.
В большинство телеприемников схемы горизонтальной и вертикальной развертки запускаются импульсом от видеопроцессора. Другие секции телевизора используют интегральные микросхемы (ИМС), в том числе: источники питания, формирователи видеовыхода, звуковые системы, схемы высокого напряжения, селектор каналов. В дополнение к обычным функциям, цифровые телевизоры с высоким разрешением содержат сложные системы, которые обеспечивают более высокое качество изображения. Технология плазменных дисплеев также дает прекрасное качество изображения в телевизорах как обычных, так и с высокой четкостью.
Сервисное обслуживание радиоаппаратуры
При поиске неисправностей радио- и звукового оборудования используется несколько методов. Например, работая с супергетеродинным приемником, начните с осмотра и прослушивания. Поищите очевидные признаки поломки. Если приемник гудит, наиболее вероятно, что у него неисправен фильтрующий конденсатор в цепи питания. Проверьте неработающий компонент, шунтировав его заведомо исправным такой же величины, или с помощью набора конденсаторов, как показано на рис. 6.19. Если гул исчезнет, замените фильтр.
Когда устройство не подает признаков жизни, проверьте включатель омметром, предварительно отсоединив устройство от сети питания. Используйте омметр также для проверки плавкого предохранителя, диода источника питания,
Сервисное обслуживание радиоаппаратуры
181
Рис. 6.19. Использование блока замены для шунтирования конденсатора
термистора и обмотки дросселя фильтра. Любой из этих компонентов мог вызвать обрыв в цепи (рис. 6.20).
Рис. 6.20. Простой источник питания
Если радио- или стереоустройство некоторое время работает, а затем выключается и через некоторое время снова начинает работать, проверьте наличие температурно-нестабильных компонентов. Используя фен для обдува горячим и холодным воздухом, аккуратно нагрейте подозрительный транзистор или ИМС. Когда дефектный компонент нагреется, приемник перестанет работать или его сигнал будет очень искажен. Теперь охладите транзистор воздухом или химическим охладителем. Приемник должен снова начать нормально работать. Обнаружив температурно-нестабильный транзистор, замените его аналогичным.
В том случае, когда питание приемника включается, но звука нет, сначала попробуйте локализовать неисправный каскад. Для этого можно использовать подачу сигналов, как показано на рис. 6.21.
Сначала подключите генератор низких частот или генератор шума к каждому каскаду приемника, соединив землю прибора с шасси приемника. Начните с подачи сигнала около 400 Гц на динамик. При этом должен быть слышен тональный сигнал. Это значит, что динамик работает. Перейдите к каскаду усилителя. Подайте сигнал на базу его транзистора. Перейдите к следующему каскаду по
182
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной аппаратуры
Рис. 6.21. Пример подачи сигналов
направлению к детектору, когда услышите тоновый сигнал. Подавая сигнала в детектор или в антенну, используйте сигнал высокой частоты. Если при этом тоновый сигнал не слышен, можно сделать вывод, что именно этот каскад вышел из строя. В этом случае проверьте сопротивление каждого компонента, чтобы выявить неисправный.
Если неисправность возникла в каскаде двухтактного усилителя НЧ с квази-комплементарной парой транзисторов на выходе, то проблема обычно заключается в выходном и/или транзисторах буферных каскадов Q2-Q5. Для проверки схемы протестируйте сопротивление между землей и точкой}, и между +Vcc и точкой} без питания ( см. рис. 6.14).
Соедините отрицательный вывод с землей, а положительный вывод вольтметра - с точкой}. Запишите результат измерений. Затем поменяйте местами выводы вольтметра. Величина сопротивления во втором случае должна быть значительно меньше, чем в первом. Короткое замыкание означает, что транзистор Q3 и/или Q5 закорочен.
Повторите описанную выше процедуру, но на этот раз проверьте сопротивление между +Vcc и точкой }. Меньшее напряжение здесь будет в том случае, когда положительный вывод подключен к точке +Vcc. Короткое замыкание означает, что Q2 и/или Q4 неисправен. Теперь закоротите RX2. Включите усилитель. Напряжение в точке} должно быть Vcc/2. Если результат измерений находится в диапазоне 25% больше или меньше этой величины, попробуйте различные величины RB1 или RX1 для достижения лучшего показателя. Иногда RX2 заменяют диодом для улучшения стабильности смещения при переменной температуре. Кроме того, если в вашем звуковом оборудовании есть диоды, проверьте их на короткое замыкание и обрыв.
Проверьте напряжение на Q3. Если она равно +Vcc, это означает, что Q4 закорочен. Аналогично, если напряжение на Q2 равно +Vcc, это означает, что закорочен Q5.
Сервисное обслуживание радиоаппаратуры
183
Измерение напряжения может быть очень эффективным способом для локализации проблемы. Например, если источник питания перегружен из-за закороченного компонента, он будет потреблять большой ток. Чрезмерный ток приводит к снижению напряжения.
У вас есть подозрение, что стабилитрон закорочен (рис. 6.22)? Отключите один из выводов от схемы. Если напряжение вернется к нормальному уровню, то диод закорочен и его следует заменить.
Рис. 6.22. Отсоединение одного вывода стабилитрона для определения его влияния на схему
Приемник скрипит, воет или издает другие подобные звуки - это означает, что в одном из каскадов возникла обратная связь. Проверьте соединения фильтрующих конденсаторов и батарей. Наиболее вероятная причина - неисправный конденсатор.
Прерывистая работа может быть связана не только с транзисторами. Причиной этого могут стать, например, плохие паяные соединения и слабые контакты. Для локализации подобной неисправности скрутите провода и приклейте их к той стороне печатной платы, где находятся дорожки. Иногда, может быть, необходимо заново перепаять некоторые соединения, чтобы найти неисправность. Перед выполнением повторной пайки обязательно выключайте питание. В противном случае тепло от паяльника может привести к тому, что транзистор начнет потреблять больше тока и разрушится. При пайке соединений диодов и транзисторов обязательно используйте теплоотвод.
Если приемник сжигает плавкие предохранители, выключите питание и начните измерения сопротивления. Имейте в виду, что если вы предполагаете короткое замыкание конденсатора, не шунтируйте его, а замените. Проверьте диоды выпрямителя на короткое замыкание, пользуясь омметром и спецификациями изготовителя. Сверьте результаты измерений со спецификациями и ищите закороченную цепь. Короткое замыкание имеет сопротивление 0 или около 0, как показано на рис. 6.23.
Для локализации неисправного каскада воспользуйтесь осциллографом, который позволяет специалисту увидеть реальную форму сигнала и определить
184
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной аппаратуры
Рис. 6.23. Измерение сопротивления коллектора транзистора с помощью омметра
частотные характеристики: коэффициент усиления, смещение фаз, уровень шума, сетевые помехи.
Стандартной причиной недостаточной громкости, регулировки тембра и искажений в магнитофоне являются грязные головки. Прочистите их изопропиловым спиртом или специальным средством. Нанеся специальную жидкость на кусочек ваты, прочистите также вал и ролик лентопротяжного механизма.
Магнитофоны
После очистки головки обычно проводится ее размагничивание. Используйте специальное устройство, которое устраняет любой нежелательный магнетизм в головке. Нежелательное явление может исказить звук, особенно на высоких частотах. При использовании устройства размагничивания несколько раз проведите им возле головки и затем медленно удалите его.
Если магнитофонная лента не протягивается или протяжка неравномерная, проверьте двигатель и механизм привода. Ищите грязные или поврежденные ролики, валы, пассики, муфты.
Часто пассик растягивается, и его необходимо заменить точно таким же типом, поскольку для ремня размер, ширина и диаметр являются критичными. Кроме того, если звук магнитофона неровный (колеблющийся), а новый ремень не решает проблемы, наиболее вероятной причиной является неисправный двигатель или несбалансированный или искривленный маховик. При необходимости замените неисправную деталь.
Если неправильно работает выключатель, проверьте натяжение пружины и рычага. Учитывайте и возможность дефектной ленты. Слабый или искаженный звук при воспроизведении, возможно, свидетельствует о загрязненной головке.
Проигрыватели лазерных дисков
Проигрыватели лазерных дисков (компакт дисков) сейчас стали стандартом для прослушивания музыки и видеовоспроизведения. Основное преимущество лазерного диска заключается в том, что информация на нем записана в цифровом виде. Это означает, что напряжение сигнала, поступающего от микрофона или видеокамеры, квантуется с регулярными интервалами, и амплитуда сигнала в этот момент сохраняется в виде двоичного кода. Эти цифровые коды записываются с помощью прожигания лазерным лучом углублений на поверхности диска.
Сервисное обслуживание радиоаппаратуры
185
Схема, необходимая для воспроизведения звука или изображения цифровой информации, очень сложна. Полупроводниковый лазер направляет луч на поверхность вращающегося диска и регистрирует отражение. Если луч падает на ямку, то отражения не происходит. Схема регистрирует эти различия в отраженном сигнале. Комбинация отражающих и не отражающих точек используется для представления чисел, последовательность этих чисел представляет исходный звуковой или видеосигнал. Цифровой сигнал обрабатывается схемой проигрывателя и позволяет минимизировать шум и искажения при воспроизведении, обеспечивая сигнал, очень близкий к исходному аналоговому входному сигналу.
Схема, которая управляет скоростью вращения шпинделя, работой каретки звукоснимателя и обработкой звукового сигнала проигрывателя компакт-дисков, ремонту, в общем, не подлежит. Если она неисправна, то ее следует заменить. Рекомендуется проверить устройства, обеспечивающие вход и выход проигрывателя: переключатели, датчики, двигатели.
Во многих отношениях компоненты проигрывателя лазерных дисков похожи на механические компоненты проигрывателей компакт-дисков и магнитофонов. Типичные проблемы в механических частях: загрузочный механизм, механизм подъема мотора шпинделя, сборка рычага, датчик угла наклона, двигатель наклона, распределительный механизм, передача привода, другие концевые выключатели, рычаги, скобы.
Например, если диск не загружается, проверьте, не связано ли это с загрузочным механизмом или триггерным переключателем. Некачественное воспроизведение может быть результатом неверно выставленного или неисправного датчика наклона, каретки звукоснимателя, вала, привода или неисправности в схеме. Проверьте наличие грязи или пыли на линзе. Очистите линзы и окружающие их компоненты, используя тампон из ваты и изопропиловый спирт. Мягко протрите линзы по спирали от центра к внешним краям. Не пользуйтесь другими спиртами, это может повредить линзы.
Основным способом проверки стереодекодера является измерение разницы между вырабатываемыми им сигналами R и L в децибелах (рис. 6.24).
Генератор стереосигналов с разделением каналов вырабатывает сигналы L и R, которые одинаковы, но смещены по фазе. Поэтому, когда сигнал R поступает на стереодекодер, выходной сигнал канала R должен быть максимален, а выходной сигнал канала L теоретически равен 0.
С другой стороны, когда на стереодекодер поступает сигнал L, должен быть максимальным выход канала L, а выход канала R должен быть теоретически равен 0. На практике при правильной работе стереодекодера должна наблюдаться разница в 20-30 дБ между сигналами. Если достигается разность в 10 дБ, это означает, что стереодекодер, возможно, неисправен или близок к этому.
Неадекватное разделение обычно вызывается неисправностью компонентов в самом стереодекодере: несогласованными диодами, диодами с недостаточным прямым или обратным смещением в переключающем мосту, током утечки коллектора в транзисторе, закороченным или оборванным конденсатором. Некачественное разделение сигналов может быть также связано с неправильной настройкой, особенно в матрице. Ознакомьтесь с соответствующими
186
ГЛАВА 6. Сервисное обслуживание радио» и телевизйонной аппаратуры
Рис. 6.24. Схема тестирования стереодекодера
руководствами по настройке и разделению каналов высокочастотных сигналов приемника.
Искажение выходного сигнала может быть связано с неисправным диодом или использованием резистора, имеющего неправильное сопротивление, в переключательном мосту. Неисправный электролитический конденсатор в схеме восстановления поднесущей может вызвать искажения выходного сигнала (гул).
Если в левом канале возникли искажения сигнала, а в правом нет, сравните напряжение, сопротивление и форму сигнала и попытайтесь локализовать неисправный компонент.
Например, если Q15 на рис. 6.25 имеет напряжение коллектора 7,38 В, этот транзистор не работает и может быть неисправен. Кроме того, если напряжение в этой точке упадет до 4 В, можно подозревать, что транзистор закорочен.
Когда выходной сигнал запускающего транзистора Q15 имеет низкий уровень, можно предполагать, что неисправен развязывающий конденсатор эмиттера. Проверьте это, шунтируя его другим конденсатором такой же величины. Если изменилась величина сопротивления одного из резисторов, изменится и смещение транзистора, что в свою очередь влияет на выходной сигнал.
Резисторы можно протестировать, измерив величину сопротивления вне схемы. Если резисторы не находятся в пределах допуска, то их следует заменить. Однако, извлечение транзисторов из схемы для проверки достаточно трудоемкая задача, и обычно резистор не меняет своей величины, если он не перегревался вследствие чрезмерного тока. В таком случае он часто выглядит поврежденным или плата вокруг него кажется потемневшей или обугленной.
Сервисное обслуживание радиоаппаратуры
187
Рис. 6.25. Номиналы компонентов и рабочие напряжения типичной стерео системы
Если на усилитель не поступают сигналы, можно предполагать, что произошел обрыв в разделительном конденсаторе. Трансформатор Т2, который действует как разделитель, может полностью отключить канал, если он закорочен.
Часто закороченный трансформатор обуглен, и это можно легко узнать по запаху. Используя омметр, следует выяснить сопротивление каждой половины вторичной обмотки. Оно должно составлять 16,3 Ом. Закороченная катушка имеет сопротивление, близкое к 0. Если в канале высокие искажения или низкая громкость, можно подозревать неисправность Q 21 и/или Q22. Даже если только один из этих транзисторов неисправен, замените оба аналогичной парой. Для хорошего воспроизведения сигнала эти транзисторы должны иметь одинаковые параметры.
Помните, что заменяя мощные транзисторы, необходимо всегда использовать теплоотвод и изолирующие слюдяные прокладки. При необходимости нанесите также теплопроводящую пасту, как показано на рис. 6.26.
В любом случае радиоприемник следует обслуживать в мастерской и правильно подключать к соответствующему источнику питания с хорошим фильтром. Автомобильный радиоприемник подключайте к источнику 12 В постоянного тока и не меньше, поскольку электрическая система автомобиля обычно работает при напряжениях между 12 и 13 В. Помните о необходимости аккуратно располагать провода.
При обслуживании приемника никогда не отключайте динамики, это позволит выявить звуковые эффекты.
На рис. 6.27 показан типичный трехкаскадный усилитель, который обычно используется в радиоприемниках. Если Q3 потребляет чрезмерный ток, это
188
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной аппаратуры
Рис. 6.26. Пример правильной установки выходного транзистора
заставит Q1 работать с большей нагрузкой. Напряжение коллектора Q1 уменьшится, поскольку Q1 потребляет больший ток. Поскольку напряжение коллектора Q1 снижается, это в свою очередь вызовет уменьшение проводимости Q2 и Q3. Вместе эта схема будет давать слабый выходной сигнал и большие искажения. Замена выходного транзистора Q3 решит проблему.
Рис. 6.27. Типичный трехкаскадный усилитель
Сервисное обслуживание черно-белого телевизора
Телевизоры и мониторы компьютеров имеют очень сходную конструкцию. Поскольку каждый каскад телевизионного приемника и монитора выполняет соответствующую функцию, по определенным симптомам можно легко диагностировать
Сервисное обслуживание черно-белого телевизора
189
неисправность. Качество видео- и звукового сигнала можно использовать для определения неисправности каскада. Вам понадобится вольтметр, осциллограф или оба прибора, а иногда и другое специализированное оборудование для тестирования телевизионных устройств. Напряжения и сигналы в критических точках проверяются по схемам изготовителей.
Когда необходимо проверить много каскадов, используйте метод половинного разделения. Проверьте сигнал посередине, между исправным каскадом и выходом. Если результат правильный, двигайтесь вперед к следующему каскаду, который расположен посередине между прежней тестовой точкой и выходом. Однако, если первый тест дает неверный сигнал, вы можете использовать метод разделения пополам в другом направлении до тех пор, пока неисправный каскад не будет обнаружен. Этот прием позволяет минимизировать число измерений.
Бледное изображение и слабый звук
Возможная причина слабого звука и изображения - некачественный входной сигнал. Повинна в этом может быть также система антенн, соединения кабеля компьютера или телевизора. Например, в составе системы антенн может иметь место неисправная антенна, слабые контакты, некачественные кабельные соединения, неверно направленная антенна.
Проверьте правильность поступающего сигнала с помощью измерителя уровня сигнала или замены другим телеприемником. Если система антенн исправна, проблема может быть связана с переключателем телеканалов. В старых механических переключателях выбор каналов осуществляется изменением частот генератора за счет вращения катушки. Нужно проверить правильность расположения катушки. Обычно вы не можете почти ничего сделать для исправления таких селекторов каналов на месте.
Чтобы убедиться в отсутствии сигнала вращайте регуляторы контрастности и яркости. Если селектор каналов работает нормально, проблема может быть в схеме промежуточной частоты, видеодекодере или схеме автоматической регулировки усиления. Все эти каскады одинаковы для каналов звука и изображения, поэтому проблемы могут быть связаны с неисправным транзистором, изменением величины сопротивления или низким напряжением питания.
На рис. 6.28 показана старая схема усилителя промежуточной частоты (УПЧ) на биполярных транзисторах.
УПЧ состоит из трех каскадов промежуточной частоты, контура выделения звуковых частот и детектора, а также видеодетектора, заграждающих фильтров для устранения несущих сигналов соседних каналов. Тестируя телевизионный приемник, проверьте сначала схему, а затем, как показано, напряжения постоянного тока и сигналы.
Например, если обнаружено аномальное напряжение коллектор-эмиттер, это показывает, что или неисправный компонент находится в схеме коллектора или изменилась проводимость транзистора по току.
Если выяснится, что транзистор и цепь коллектора исправны, значит, имело место изменение напряжения смещения перехода база-эмиттер, что может
Рис. 6.28. Типичная схема усилителя промежуточной частоты
Фильтр
Детектор звуковой частоты
К первому видеоусилителю
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной алпаратурь
Сервисное обслуживание черно-белого телевизора
191
быть результатом изменения величины сопротивления резистора или утечки конденсаторов в схеме базы или эмиттера.
Обратите внимание, что схема автоматической регулировки усиления управляет смещением первого каскада промежуточной частоты. Если схему АРУ неисправна, она может уменьшить коэффициент усиления каскадов промежуточной частоты и стать причиной бледного изображения.
Хорошее изображение, слабый звук
Если изображение хорошее, а звук слабый и искаженный, причина может находиться в усилителе звуковой промежуточной частоты, детекторе ЧМ, усилителе, громкоговорителе. Детектор ЧМ является наиболее вероятным источником проблемы.
Сначала проверьте правильность напряжения и формы сигнала детектора ЧМ. Если параметры соответствуют спецификациям изготовителя, значит, проблема заключается в динамике или усилителе. Простой способ тестирования звукового каскада требует увеличения громкости и проверки наличия шума. Когда шум при увеличении громкости также возрастает, это значит, что выход усилителя и динамик работают. В таком случае ищите проблему в предыдущем каскаде или детекторе ЧМ, а также в усилителе звуковой промежуточной частоты.
Бледное изображение при нормальном звуке
Изображение бледное, но сопровождается нормальным звуком и ярким экраном - каскадами, которые могли повлиять на изображение, являются система антенн, усилитель высокой частоты, конвертор, генератор, усилитель промежуточной частоты, видеодетектор, система автоматической регулировки усиления и, что наиболее вероятно, видеоусилитель. Проблема может заключаться в уменьшении напряжения от источника. Другой возможной причиной является видеодетектор, который представляет собой диод CRA55 на выходе усилителя промежуточной частоты, как показано на рис. 6.28.
Отсутствие изображения при нормальном звуке
На экране телевизионного приемника нет изображения, а только чистый растр - значит, дефект находится в каскадах до выделения звука. Однако возможно, что неисправность возникла в схеме видеоусилителя. Если на экране нет помех типа «снег», проблема, скорее всего в видеодетекторе йли каскаде усилителя промежуточной частоты. В противном случае из строя, вероятно, вышел усилитель высокой частоты в селекторе каналов или неисправна система антенна/кабель (рис. 6.29).
Для того чтобы определить, находится ли поломка в селекторе каналов или системе антенна/кабель, просто возьмите исправный телевизор. Если помехи исчезнут, значит, проблема в тюнере. Если нет, то проблема в антенне или линии передачи. Часто к изображению с помехой типа «снег» приводит неисправный
192
ГЛАВА 6. Сервисное обслуживание радио* и телевизионной аппаратуры
Рис. 6.29. Телевизионный приемник с помехами типа «снег»
усилитель высокой частоты. Многие более старые переключатели каналов содержат серебряные контакты, которые со временем окисляются и загрязняются. Если периодическое изменение положения ручки настройки тюнера приводит к подергиванию изображения, то следует очистить контакты тюнера специальным средством. Снимите крышку тюнера и нанесите аэрозольное средство на контакты, повернув селектор пять раз в одном направлении и пять раз в другом направлении.
Более новые устройства содержат модули, которые состоят из многих секций. Часто заменяется весь модуль. В отличие от старых вращающихся тюнеров, модули с кнопочным управление в случае загрязнения, изношенности, неисправности следует заменять.
Не исключайте возможность неисправности в кабелях. Проверьте кабель на короткое замыкание и обрыв, если у вас есть сомнения в его качестве, замените компонент при необходимости.
Звук нормальный, но нет растрового изображения
Если нет растрового изображения, это означает, что в секции питания высокого напряжения возникла неполадка. Могут быть проблемы в каскаде отклонения по горизонтали, например, в строчном трансформаторе или демпфере. Проверьте высокое напряжение соответствующим пробником, чтобы определить, есть ли оно на аноде электронно-лучевой трубки. Будьте осторожны, поскольку может возникнуть опасная дуга.
Проблема может быть в трубке. Но если напряжение постоянного тока недостаточное, проверьте напряжение переменного тока от строчного трансформатора. Более новые схемы могут иметь на этом каскаде только напряжение постоянного тока. Сравните положительные и отрицательные напряжения постоянного тока в схеме со значениями, указанными в руководстве по обслуживанию. Появление дуги голубого цвета показывает напряжение переменного тока. Напряжения постоянного тока приводят к возникновению дуги белого цвета. Если на строчном трансформаторе появляется дуга, это значит, что неисправен выпрямитель высокого напряжения. В противном случае, это может означать неисправный строчный трансформатор или схему горизонтального
Сервисное обслуживание черно-белого телевизора
193
Другая возможная причина отсутствия растрового изображения заключается в неисправном селекторе каналов или каскаде промежуточной частоты. При этом передаются только сигналы черного, экран остается темным.
Трубка для вывода изображения, как и любая другая электронно-лучевая трубка, работает по принципу термоэлектронной эмиссии. Слабая эмиссия приводит
Рис. 6.30. Типичная схема системы строчной развертки
194
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной аппаратуры
к расфокусированию трубки и образованию оттенка серебряного цвета. Для того чтобы простым способом выявить слабую эмиссию, увеличьте яркость изображения регулятором. Если картинка становится серебристой и несфокусированной по сравнению с выключенной яркостью, можно считать, что трубка испорчена или постепенно выходит из строя. При отсутствии высокого напряжения проблема заключается в выпрямителе высокого напряжения, демпфере, схеме отклонения по горизонтали или генераторе строчной развертки.
Найдите генератор строчной развертки, схему отклонения по горизонтали, трансформатор строчной развертки, демпферный диод (рис. 6.30).
Перед проверкой высоковольтного выпрямителя или трансформатора строчной развертки необходимо разрядить трубку. Используя провод с зажимом типа «крокодил», подключите один вывод к шасси, а другой - к жалу отвертки. Анод представляет собой проводник под изолирующей прокладкой из похожего на резину материала. Изолируйте выпрямитель или трансформатор и проверьте на обрыв. Проверьте состояние выпрямителя, или просто используйте диод для замены. Протестируйте сопротивление строчного трансформатора с помощью омметра. Помните, что для получения высокого напряжения генератор строчной развертки должен работать, проверьте выход генератора.
Категорически не следует превышать необходимый уровень высокого напряжения, иначе может возникнуть нежелательное рентгеновское излучение. Хотя для защиты от рентгеновских лучей часто используются размагничивающие экраны и другие устройства, утечки, тем не менее, могут возникать. Проверяйте высокое напряжение точным прибором. Некоторые специалисты проводят тесты, изменяя положение регулятора яркости между максимальным и минимальным значением. Таким образом можно убедиться, что не превышается величина максимального напряжения и схема правильно отрегулирована.
Звук нормальный, но нет синхронизации изображения
О том, что потеряна горизонтальная синхронизация, обычно называемая сбоем строк, свидетельствуют широкие наклонные полосы на экране (рис. 6.31). Проверьте управление отклонением по горизонтали и убедитесь, что оно правильно
Рис. 6.31. Сбой по горизонтали
Сервисное обслуживание черко«белого телевизора
195
настроено. Если это так, проблема заключается в генераторе строчной развертки. Когда он перестает работать, то импульсы запуска на горизонтальный выход или на катушку отклоняющей системы не поступают.
Звук нормальный, но имеет место сбой строк и уменьшенная ширина изображения
Когда имеет место сбой изображения или поперек экрана проходят широкие наклонные полосы, или изображение перемещается по вертикали, сначала проверьте правильную установку регуляторов по вертикали и горизонтали. Другая возможная причина заключается в неисправности схемы выделения сигналов синхронизации или в каскаде усилителя синхросигналов.
Возможно, что неполадки возникли в системах строчной и вертикальной развертки (рис. 6.32). Она состоит из генератора развертки по вертикали, схемы запуска, выходного каскада вертикальной развертки, связанного с отклоняющей системой.
Рис. 6.32. Типичная схема системы вертикальной развертки
Звук нормальный, но изображение смещается по вертикали и складывается, высота изображения уменьшена
Если изображение перемещается в вертикальном направлении, вероятная причина заключается в неисправности генератора вертикальной развертки (рис. 6.33).
Когда генератор прекращает вырабатывать сигналы, то не будет вертикальной развертки, и все, что можно увидеть на экране, это яркая горизонтальная линия. Проблема заключается в слабом выходном сигнале вертикальной развертки, если высота картинки уменьшилась,
Кроме того, можно предположить еще несколько вариантов причин неисправности: изменение смещения генератора или выходного каскада, низкое
196
ГЛАВА 6. Сервисное обслуживание радио- и телевизионной аппаратуры
Рис. 6.33. Другие неисправности, связанные с системой вертикальной развертки
напряжение постоянного тока, короткое замыкание или обрыв в компоненте (см. рис. 6.32). Если наблюдается хотя бы частичная картинка, то генератор и выходной транзистор вряд ли закорочены.
Однако, если на экране видна только одна горизонтальная линия, тогда можно предполагать короткое замыкание генератора или выходного транзистора. В этом случае вероятной причиной является неисправный компонент, возможно С306, С308, или R310. Например, если закорочен С306, тогда прерывается процесс формирования пилообразного сигнала и изменяется смещение Q302, что уменьшает усиление и генерацию.
В том случае когда в С306 обрыв, картинка «складывается» с белой полосой и сжатыми строками в нижней части экрана. Один из способов проверки этого компонента заключается в шунтировании конденсатора С306 исправным (или с помощью блока замены конденсаторов) при включенном телеприемнике. Если восстанавливается нормальное изображение, то проблему можно считать локализованной. Проверка напряжения коллектора Q302 в этой схема покажет низкое напряжение, поскольку конденсатор С306 оборван и не подает на коллектор необходимый заряд.
Если изображение имеет уменьшенный размер по вертикали, а также трапециевидные искажения, вероятная причина заключается в неисправной схеме отклонения или в схеме коррекции подушкообразных искажений (для цветного телевизора). Обратите внимание: проблема здесь не в генераторе вертикальной развертки или выходном каскаде.
Для того чтобы определить, что является причиной перемещения изображения по вертикали и сбоя по горизонтали: генератор или система синхронизации, можно выполнить простой тест.
Если картинка появляется при изменении положения регулятора генератора, но не удерживается, то проблема в схеме синхронизации. Неисправный диод в схеме автоматической регулировки частоты (АРЧ) часто вызывает сбой изображения по горизонтали. Обратитесь к рис. 6.30, где показан
Сервисное обслуживание цветного телевизора
197
пример диодов АРЧ в схеме строчной развертки. Если в схеме произошел обрыв С5, то напряжение по горизонтали снижается, это уменьшает ширину изображения (см. рис. 6.30).
Когда транзистор генератора строчной развертки или резистор 3,3 кОм закорочен, то напряжение не будет подаваться на схемы горизонтальной развертки. В новых моделях телевизоров можно заменить целиком модуль или плату.
Недостаточное отклонение по вертикали может быть следствием неисправного генератора, выходного транзистора или ИМС. Обрыв развязывающего конденсатора или резистора эмиттера может стать причиной недостаточного усиления, что приведет к уменьшению высоты картинки. Имейте в виду, что трапециевидные искажения обычно вызваны неисправностью в отклоняющей системе, а не в схеме развертки по вертикали. Их можно устранить, слегка ослабив отклоняющую катушку и направив ее в нужном направлении.
 Не затягивайте слишком сильно отклоняющую катушку, вы можете легко по-вредить шейку трубки.
Нормальное изображение, слабый звук
Если изображение нормальное, но нет звука, проверьте усилитель промежуточной частоты, детектор ЧМ и каскады усилителя низкой частоты, может быть также неисправна катушка динамика.
Слабый звук предполагает неправильную регулировку или уход частоты гетеродина из-за изменения параметров компонентов. Поскольку в этот процесс вовлечены многие каскады, для локализации неисправного используйте метод поиска с половинным разделением. Ищите неисправный транзистор, ИМС или модуль в секции обработки звука. Изменение параметров компонентов или неисправный кабель в каскадах обработки звукового сигнала могут повлиять на коэффициент усиления усилителя. Искажение звука может быть вызвано неисправностью согласующего конденсатора между каскадами.
Телевизор не подает признаков жизни
Как и в случае с радио, если телевизор совсем не работает, проверьте источник питания. К числу возможных причин неполадок относятся: сгоревший плавкий предохранитель, блокиратор включения при снятом кожухе, обрыв шнура питания, обрыв или короткое замыкание в кабеле, неисправный компонент: выключатель питания, трансформатор, диод или выпрямитель, термистор, модуль ИМС источника питания.
Сервисное обслуживание цветного телевизора
На студии сцена, которая предназначена для демонстрации на телевидении, снимается тремя отдельными камерами, каждая их которых воспринимает только один из трех первичных цветов (красный, синий или зеленый). В дополнение
198
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной аппаратуры
к основным цветам могут формироваться дополнительные: желтый, оранжевый, бирюзовый, пурпурный. Различные комбинации дадут любой цвет, воспринимаемый человеческим глазом. Оттенки и варианты сами являются отдельным цветом. Насыщенные цвета яркие и сильные. Недостаток насыщения выражается в бледном слабом цвете. Цветность определяет комбинацию оттенка и насыщения. Яркость определяет воспринимаемую яркость изображения.
Три камеры сканируют сцену одновременно. Первичные цвета - красный, синий и зеленый - подаются на видеокодер передатчика, который формирует сигнал Y, или яркость, и цветность, или сигналы I и Q. Сигнал Y содержит соответствующие пропорции красного, синего и зеленого, и он может воссоздать нормальный черно-белый сигнал, который используется для модуляции несущей. Сигналы цветности I и Q используются для модуляции поднесущей цвета 3,58 МГц, которая подавляется в процессе модуляции. Комплексный сигнал содержит: несущую, Y (или яркость), сигналы цветности (I и Q) а также сигнал аудио ЧМ.
Если сигнал принимается черно-белым (монохромным) приемником, выделяется и обрабатывается только сигнал Y. Сигналы цветности I и Q не могут быть приняты и обработаны, поскольку у приемника нет генератора 3,58 МГц, необходимого для восстановления сигналов I и Q.
Блок-схема узла телевизионного приемника, связанная с воспроизведением цветного изображения, показана на рис. 6.34. Сигнал цвета поступает от видеоусилителя на усилитель цветности, где сигнал усиливается. Обратите внимание, что после усиления видеосигнала сигнал Y доступен сразу после задержки 1 мкс, так что сигнал Y и сигналы I и Q поступают на ЭЛТ в одно время. Обработка сигналов I и (^требует около 1 мкс дополнительного времени.
После усиления цветового сигнала, он передается на полосовой усилитель 2-4,2 МГц, который отделяет информацию сигналов I и Q от информации сигнала Y, после чего она передается на детектор I и детектор Q. На вход этих детекторов поступает сигнал 3,58 МГц от кварцевого генератора, который управляет работой детектора. Имейте в виду, что сигнал генератора 3,58 МГц смещается по фазе на 90° на передатчике для разделения различных сигналов.
После выделения сигналов I и Q, они передаются на соответствующие низкочастотные фильтры и обрабатываются фазовым инвертором для положительных и отрицательных цветовых сигналов, которые формируются следующим образом:
♦	зеленый = - I - Q + Y;
♦	синий = - I+Q + Y;
♦	красный = I + Q + Y.
Сигналы I, Q, Y складываются в схемах сумматоров цвета, где номиналы резисторов обеспечивают надлежащую пропорцию каждого сигнала. Каждый цветовой сигнал затем передается на соответствующую сетку ЭЛТ для управления интенсивностью луча. В каждой схеме сумматора установлен подстроечный резистор, который позволяет изменять содержание каждой составляющей по отношению к другим составляющим.
Рис. 6.34. Блок-схема секции воспроизведения цветного изображения телевизора
От видеодетектора
-О
Усилитель сигнала цветовой синхронизации
Сервисное обслуживание цветного телевизора
200
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной аппаратуры
Кварцевый генератор поднесущей недостаточно точен для обеспечения правильного выделения цветовых сигналов. Поэтому при передаче цветового сигнала его образец помещается на задней площадке гасящего импульса, как показано на рис. 6.35.
Импульс строчной синхронизации
8 периодов сигнала цветовой синхронизации на задней площадке
Гасящий импульс горизонтальной ------►
развертки
Рис. 6.35. Гасящий импульс строчной развертки с задней площадкой
Усилитель сигнала цветовой синхронизации получает часть сигнала и посылает его на фазовый детектор. Фазовый детектор сравнивает сигнал 3,58 МГц с сигналом цветовой синхронизации. Если сигналы совпадают, сигнал постоянного тока посылается на модулятор на реактивном сопротивлении, который устанавливает точную синхронизацию сигналов.
Фазовый детектор посылает также сигнал выключения канала цветности. Задача этого сигнала заключается в предотвращении появления какого-либо цветового сигнала при работе в монохромном режиме. Пока выполняется такой режим, поступает сигнал выключения канала цветности, затем этот сигнал выключается. Когда нет сигнала цветовой синхронизации, как это имеет место при монохромном вещании, фазовый детектор посылает сигнал постоянного тока, который отключает полосовой усилитель.
Корректное воспроизведение цвета требует неискаженных сигналов цветности и яркости. Любые дефекты, которые искажают черно-белое изображение, будут влиять и на цветное изображение. Общая локализация проблем с цветом может быть выполнена в терминах растрового изображения и качества монохромного изображения. Хорошее растровое изображение показывает нормальные напряжения постоянного тока, качественная монохромная картинка является признаком нормального сигнала Y и соответствующего напряжения, постоянного тока на трубке.
Отсутствие цвета
Если нет цвета, ищите неисправную ИМС или модуль в каскадах обработки сигналов I и Q. Может быть неправильно настроена или неисправна регулировка сигнала выключения канала цветности.
Сервисное обслуживание цветного телевизора
201
Может быть также неисправен полосовой усилитель. Проверьте наличие сигнала 3,58 МГц и сигнала цветовой синхронизации на генераторе и поднесущей частоты.
Слабый или тусклый цвет
Слабое или выцветшее изображение может возникать в результате неправильно настроенного экрана и схемы запуска, а также смещения на трубке. Частично вышедший из строя транзистор или ИМС в каскадах обработки сигналов I и Q, или дефекты в полосовом усилителе могут также стать причиной этой неисправности. Возможно недостаточно точно настроены селектор каналов и каскады промежуточной частоты, что также может вызвать указанную неисправность. Проверьте наличие сигнала 3,58 МГц и сигнала цветовой синхронизации на генераторе и усилителе поднесущей.
Доминирующий цвет на экране
Если на экране доминирует синий цвет, возможная причина может заключаться в неправильно настроенных схемах усилителя зеленого и красного цветов, или некорректных установках регуляторах экрана.
Когда доминирует красный цвет, следует искать неправильные настройки в каналах обработки синего и зеленого. Возможно также, что неисправна трубка.
Если некоторые цвета более яркие, чем другие, обычно проблема заключается в неправильно настроенном экране или схемах управления цветом.
Сигнал выключения канала цветности
Сигнал выключения канал цветности отключает усилитель цветности во время черно-белой передачи. Неисправность схемы генерации этого сигнала вызывает цветовой шум, который называется «конфетти», он похож на помехи типа «снег», но с более крупными цветовыми пятнами. В этом случае следует проверить настройку или схему генерации сигнала отключения цветности.
Цветные полосы
Другой типичной проблемой цветных телевизоров является присутствие полос на изображении. Обычно причиной возникновения этой проблемы являются реактивный транзистор, схема автоматической подстройки частоты или неисправная схема синхронизации. Многие из этих схем находятся в интегральной микросхеме, которая называется цветовым процессором, поэтому следует заменить эту микросхему или весь модуль.
Другие проблемы цвета
Картинка, которая имеет черно-белый оттенок, говорит о нарушении чистоты цвета или что трубка нуждается в размагничивании. Большинство телевизоров
202
ГЛАВА 6. Сервисное обслуживание радио* и телевизионной аппаратуры
и мониторов имеют автоматическое размагничивание. Однако, если оттенки цвета меняются при изменении положения изображения, проверьте настройки чистоты цвета.
Если цвета неправильно выделены, проверьте сведение.
Плохая фокусировка говорит о неисправности фокусного выпрямителя или схемы фокусировки. Сначала проверьте выпрямитель, затем остальные компоненты схемы. Может быть неисправен узел управляющей панели, кабель, штырьковые разъемы, блок развертки.
Если цвета размазаны, проверьте, не произошла ли потеря сигнала Y, или не возникла ли неисправность в системе видеоусиления.
Сведение лучей
Потребность в сведении лучей постепенно уменьшается, поскольку большинство современных приемников снабжены соответствующей схемой. Еще одно сведение лучей может быть необходимо, когда новая трубка устанавливается в телевизор. Стандартная процедура описана в руководстве по техническому обслуживанию. Обычно общее сведение лучей заключается в настройке правильного размера изображения, фокуса, линейности. Яркость также настраивается на определенном уровне. Обычно для этой процедуры используется генератор точек, полос и сетчатого поля.
Настройка чистоты цвета
Выключите пушки синего и зеленого сигналов и переместите отклоняющую катушку вперед. Настройте магниты чистоты так, чтобы красный луч сфокусировался точно в середине экрана. Теперь отведите катушку назад, чтобы растр стал полностью красным.
Статическое сведение
Включите зеленую пушку. Настройте магниты статического сведения красного и зеленого так, чтобы два луча слились в центре экрана и образовали желтую точку. Теперь включите синюю пушку и соедините три луча в центре экрана для формирования белого цвета.
Динамическое сведение
Настройте каждый динамический регулятор на сведение в верхней части, нижней части и на сторонах трубки. Прежде, чем вы завершите полное сведение, важно настроить картинку на наиболее качественное получение серой шкалы, которая обеспечивает оптимальный баланс черного и белого. Когда телевизор включен, а цвет выключен, настройте регуляторы красного, синего и зеленого для получения серого растрового изображения.
Последний шаг заключается в настройке регуляторов экрана. Установите переключатель в рабочее положение. При этом по центру экрана появится
Сервисное обслуживание цветного телевизора
203
горизонтальная линия. Поверните регуляторы цвета по часовой стрелке, а затем медленно настройте каждый из них так, чтобы цвет был едва виден.
Если при работе телевизора сведение не сохраняется, причина может заключаться в неисправном выпрямителе сведения.
Техническое обслуживание телевизионных приемников последних моделей
Материал этой главы касается общей теории работы телевизора и ориентирует вас на поиск наиболее вероятных неисправностей в блоках. Большинство из приведенных схем относятся к более старым телевизионным приемникам. В современных телевизорах меньше отдельных полупроводниковых компонентов. Целые секции телевизора: тюнер, усилители видеосигнала и промежуточной частоты, блоки развертки, выходные каскады звукового сигнала и др. выполняются в виде интегральных схем (рис. 6.36).
ICX1200
TA8879N
Рис. 6.36. Блок-схема компонентов телевизора ICX1200
IC2100 LA7830
|pump-up|
1	2	3	4	5	6	7
204
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной аппаратуры
Телеприемник, представленный на рисунке, содержит усилители промежуточной частоты, видеоусилители, видеодетектор, детектор аудио ЧМ, генератор вертикальной и строчной развертки, и все это в одной ИМС!
Это не означает, что ИМС - единственный компонент, который может быть неисправен. Каждая ИМС соединена со многими периферийными компонентами. Для управления всей системой используется также микропроцессор.
R1204 U1200
Ю00 4,5MHz
C6025 0,0033
R6032 51K
R1OOO7 R27K9 01213 R1221 1000	27K 00Q1 36K
8,9V
C6026 0,01
5,0V R1220 39K
52
L1201
1|ё1220
N15O_J_ C122T 7pF NPO
51
Li 200 filter
__C12O5 -r 47pF
‘ #PARTOFTA8879N
’	ICX1200 IF/VIDEO
5,0V	4,0V 4,4V
R1201 18K
C1202 7MF
R1215
C1209 U1201 0,001 SAW FILTER
R1217 C’2’1 ri2,3Q1201AMP
100 °’00'
R1231
33
R1212 100
C6096 j+
4,0V 4,0V 4,0V 9|	2
2,0V 6,6V
3l
49Г
6,6V 5,3V
3,5V
5,3V
R1206I
RFAGC RANGE 4700 J
4,0V TO 7,5V I
T юля
R1208 g gv
RFAGC 0,yV
5000
___ R1205 £
8,9V 24K	8,9V
npocSt5 68pF
NPO
LIZOzf •
6 g 5.2VTO5.9M о Q1202 AMP I
4-7V W513V
R1227 47K_
2 5V
'50V
R1226 47K
JL.C2240 T 39pF
— C1208
T 0.47MF
R2228 47K

SYNC j----------------------------------------
3,7V
10ps
_0,2V	5.2V 7,2V	2,2V? 3,8V.
22
6.4V 4.7V
0,1
RX2261 3300
RX2265 4700
C2111 0 01
C2243 0,001
9,0V C2203 0,022 100V
J it RX2260
П820
680
IR2268 I 10K
ccSl
C2232 JL IpF T 100V r*n C3214
В47(iF
C2200 2,2uF 100 V
§CX222 g 47pF
RX2263RX2264 5,0	4700
30
R2108 15K
R2110 68K
R2104 6,8
"122V 10ps
Q3201 r-г
та
31
C2104 R2103 R£J97	vPRT1q?7F
4.7pF 15K	—
R2l02o£j 12K
>6 rR2293 47 (1000)
R2105
6,2
IR2259
I 1500
CR2202
9,0V R3203 5100
А1 A2
’01
0,2
180 1--X__2P0V	1
1ГкХ1.!°^сз201Т
2,2pF 100V
1R3201 4700
1 3W
100 V

A
Рис. 6.37. Схема секции усиления промежуточной частоты и обработки видеосигналов
и части секции развертки
Сервисное обслуживание цветного телевизора
205
В течение более 50 лет SAMS Photofacts поставляет техническую документацию по бытовой электронике для профессиональных специалистов сервисного обслуживания и электронщиков-любителей, которые увлекаются ремонтом оборудования. Обратите внимание, как распределены различные функциональные схемы (рис. 6.37).
Указаны формы сигналов и уровни напряжения постоянного тока для всех критических точек схемы. Большинство слаботочных каскадов обработки сигналов выполнены в виде одной ИМС, а усиление мощности и буферизация сигналов между каскадами осуществляются схемами с использованием транзисторов. Обратите внимание, что выходной каскад вертикальной развертки выполнен
PROCESSOR 4,8V
4.4V	3.1V
6| NC
R1209 9100
C1222
Q2201 amp
R2213 ||95nn
1300 U220°
9 0V
R2214
1600
delay
C2210 10pF 100V
Q2200
L2202
2,1V 10ps ICX1200
R2204
220 |
R2227 13K
32,2V lOps
with bar generator
R2228 10K
R2225
8200 9,0V
U2201
4,5MHz
0V
TAKEN WITH CHROMA BAR SWEEP GENERATOR
R2205 1000
trap
“1“ R2229 10K
Q2209 stable display
07V
#PART OF TA8879N if/video processor
2,1V________4,4V
I 131 x
CR2200 о ।----J-----
oh58MHz_L hr-i d: g. С2204=Ь Ll______k_l
3,3V
40
C2213 39pF
0 6V 10ps
lOps
R2216 .220
2,5V hOps
R2217 IM
Q2205	47pF^;
brightness control
R2244
.0,4V/p(l.9vl
§ о	R2235
11K
5R2291 1200
C2237
T0-01
1,4V 5ms
C2102 220pF
52V
5ms
DY1
R2284 П JI 1000U R2241 U 4700 “7
Q2205	910V
R2246 contrast control 3900
Jj----1 -0.3V
R2283
10001
KI R2234
L 9,0V 20K
R2250 56K
CR2209
R2240 3900	.
C2219“T“™ 4,7pF	O’”,
9,0V
R2221П 560IJ
R2247 9100
------
; 2Y2
R2248 133 К
C22C8
R2249 39K
C3206
=4=0,56
250V


|FT4

g

Я MAGNET
TX3200 BOTTOM VIEW
Рис. 6.37. Схема секции усиления промежуточной частоты и обработки видеосигналов
и части секции развертки
206
ГЛАВА 6. Сервисное обслуживание радио» и телевизионной аппаратуры
в виде отдельной ИМС, а выходной каскад строчной развертки - в виде двухкаскадной схемы с использованием мощных транзисторов.
Сервисное обслуживание,современного телевизора требует знаний о прохождении сигнала для прогнозирования, наиболее вероятного источника проблемы,
*	7.«
P3400 3Re{xFX34»5tX340t
CX3425X

POLARIZED
3R8 Al
R3425
5W
R3419 1000 10W
3T8
L3000 DEGAUSS
izsvac
CX34991L 0,0047^ 125VAC C
RX3401
2200nF^С3483 12.4V
CR3490
R3430 100 Q3420REG
9.1VpJcF
CRX3473
CRX3474;
[og
16(
5.8V 5ms
#RX3480
—*AV-
source
#
CRX3449 470nF 200V
Q3423 switch \3V CR3492±
9.0V source
2W
ППШ1-
HA
R3416-woo:
R3431 2200
R3426 220
C6019 1000nF
CR3493 5.1V
CR3488 : rC3499 f ---	* 0.001^
7	'
,c	RX809
15 Q3422REG ^10’*
3,6V
C3209 470pF
RX806-1000J
1180V
I source
12.3V source
1100V I source
4.8V source
C3423 220nF -4-
R3Z3Z
2.2
CX8O4iu lOOOpF
R3209 2.2
CR3201
-H—
C3407
(л
500V
C^200
L3299	2.2	4A5	5A4
f—C-D-	—\Mr- ,—o—o-
i	• CX3234 .3	1
;	C3235	; 10hF uL
L——J 160v J_ 500V
124.0V Isource
R3208
IC3200 REG
R3428 39
1W R3215
1W
R2206 51
9.3V	5.1V
ItPARYo^’j 1 ДХ3200 " !
L1600
C3218 T C3208, 0.1 -T* 2200pF 100V ▼_________Уйм 12.4V
C3212 +T “source 470цР T
CR2201 x XC2299 C2207
9.1VM gj4.7nF ХЮОцГ
С22061 a 0.1 J
19.0V
I source
out _ L3208 C3215 I *C6094+T C6095T 0.47nFX 150gFi±i 0.1 i
CR1201
9.1V
C1215 i
B8.9V source
D5.0V source
___ L78M08ABV
IC1603 reg
out
HEI 12.2V C1630ic 165бЛ C1658-1- 1И source 0.047 TlOOnFTJ 0.1 T
C1619+TC162O-I.C 1631-1-С1бЗаТ 10pF 0.1 ^0.047^ 100nF^
|8.1V Isource


Рис. 6.38. Источник питания телевизионного приемника
Сервисное обслуживание цветного телевизора
207
внутри которого можно с помощью осциллографа попытаться найти точки с неправильной формой сигналов. Когда локализована проблемная область, измерения с помощью вольтметра постоянного тока часто позволяют определить неисправный компонент.
Распространенной проблемой при ремонте современных телевизоров является блок питания. Старые приемники снабжены простыми линейным источником питания с несколькими регулируемыми напряжениями, подаваемыми на различные секции телевизора. Новейшие модели используют схему источника питания постоянного тока для генерации нескольких первичных напряжений питания, которые используются для секции генератора строчной развертки. Полученные на генераторе колебания снимаются с вторичной обмотки строчного трансформатора и используются для генерации других напряжений схем телевизора (рис. 6.38).
Обратите внимание на обмотки трансформатора ТХ3200 (выходной трансформатор строчной развертки) в нижнем левом углу. Он представляет проблему для специалиста при полностью неработающем телеприемнике. Для функционирования генератора источник питания должен быть в порядке, но и источнику питания для работы необходим генератор. Поиск неисправного компонента в такой замкнутой системе - нелегкая задача! Каждый телевизор имеет свои особенности, но обычно руководства по обслуживанию описывают процедуру локализации проблем источника питания.
Руководства по обслуживанию
Большинство руководств по обслуживанию представляют собой комбинацию схем и диаграмм прохождения сигналов. Эти диаграммы помогают быстро найти неисправные компоненты с помощью схем и контрольных точек. Например, при поиске неисправностей системы видеопроекции используется диаграмма, показанная на рис. 6.39.
Начните с первого этапа диаграммы, проверив наличие напряжения 120 В переменного тока на контактах 1-3. Если напряжения нет, проверьте плавкий предохранитель. В противном случае протестируйте напряжение на контактах 6, 4, 3, 1. Выполните ремонтные процедуры, если потребуется, например, замените ИМС, кабели, платы ИМС или сборки, или исправьте плохие соединения.
Схемы и блок-схемы также являются обычным вспомогательным средством при поиске неисправностей (рис. 6.40).
Они помогают специалисту провести необходимые измерения в указанных точках. Такие схемы обычно сопровождаются диаграммой прохождения сигналов, чтобы специалист мог проследить логическую последовательность действий для локализации неисправности. Большинство компаний-изготовителей проводят тщательную техническую подготовку и выпускают сервисные руководства, которые являются важным вспомогательным средством при ремонте телевизоров и других электронных устройств.
Узлы селекторов каналов в большинстве современных телевизоров выполнены в виде ИМС обработки высокой частоты с цифровым или микропроцессорным управлением с периферийными компонентами, которые образуют цепи RLC для регулировки. Если обнаружено, что узел обработки высокой частоты
208
ГЛАВА 6. Сервисное обслуживание радио* и телевизионной аппаратуры
Рис. 6.39. Блок-схема поиска
неисправен, он в большинстве случаев не ремонтируется, а заменяется. Обычно он представляет собой отдельный модуль в защищенном корпусе. При неисправности микропроцессора его также следует заменить.
Эти телевизионные приемники все еще производятся таким способом, который допускает их ремонт. Телевизоры с использованием печатных плат являются стандартом в течение последних 30 лет. ИМС выполняются в корпусах с двумя рядами выводов, что позволяет заменять их, как это описано в главе 7.
Другие компоненты: конденсаторы, транзисторы, диоды, можно также легко заменить. Таким образом, телевизоры все еще относительно ремонтопригодны. В начале XXI в. цифровые технологии телевидения высокого разрешения сделают эти телеприемники устаревшими. Появились дисплеи, основанные на
Сервисное обслуживание цветного телевизора
209
250VDC
5N4 PIN 1
S---------
225VDC NORMAL ON
OVDC SHUT DOWN CONDITION
±+ C-5101	Fl R-5151
“Г 4.7UF	| I 560k
JL D-5101 ¥ SIGNAL DIODE
R-5153 130k
5B PIN 1
-----S
30VDC NORMAL ON CONDITION
0VDCTO-170VDC SHUT DOWN CONDITION
90VDC 5L IS IN SET UP POSITION
П R-5154
II 1k
\ YOKE
▼ TO DISTRIBUTOR (GND)
-ANODE-►
NUMBERS REFER TO C.R.T.
SOCKET
DAG (GND)
]бВВ
I5DB
Рис. 6.40. Типичные схема и блок-схема
совершенно иных технологиях, которые заменяют ЭЛТ. Это означает, что больше не будет необходимости в сильных магнитных полях для отклонения луча. С уменьшением потребности в компонентах высокой мощности для управления работой дисплеев можно ожидать, что все большая часть схем будет выполняться в виде специализированных ИМС.
210
ГЛАВА 6. Сервисное обслуживание радио* и телевизионной аппаратуры
Компоненты для поверхностного монтажа
Ремонтируя компоненты, помните, что технология развивается. Например, в 1970-е годы многие шасси изготавливались со штампованными металлическими основаниями и выступами и затем выполнялись соединения комбинации ламп и транзисторов с помощью ручной пайки паяльниками мощностью 200 Вт.
В результате получались так называемые «гибридные» транзисторно-ламповые схемы. Полупроводниковые приборы вызвали необходимость применять паяльники 40 Вт, поскольку ИМС и компоненты очень близко располагаются на печатных платах. Многие современные схемы представляют собой миниатюрные устройства для поверхностного монтажа или чипы - крошечные блоки, которые припаиваются к модулям из металлической фольги. Эти приборы чрезвычайно хрупкие, их можно легко повредить при неверном движении или перегреве.
Резисторы и конденсаторы также миниатюризируются и часто изготавливаются с очень маленькими основаниями из пленки. Приборы для поверхностного монтажа, интегральные схемы, транзисторы, диоды и другие хрупкие компоненты требуют специальных теплочувствительных инструментов и оборудования. Необходимы паяльные станции с контролируемым нагревом 25 Вт с применением трубчатого припоя 0,3 мм.
При работе с приборами поверхностного монтажа и другими миниатюрными компонентами нужны крошечные микропинцеты, стоматологические иглы и ювелирные отвертки. Снимая такой прибор, захватите его пинцетом и аккуратно покачивайте его, нагревая припой на концах выводов. Когда контакты ослабнут, мягко отделите прибор. Не рекомендуется повторно использовать миниатюрный прибор, извлеченный из схемы. Аккуратно нагрейте выводы миниатюрной ИМС и поднимите ее, используя стоматологическую иглу. Аналогично, при замене компонентов, направляйте их пинцетом и осторожно припаивайте.
Профилактическое техническое обслуживание
Неисправности звукового оборудования могут очень часто быть непосредственно связаны с неправильным использованием. Стереоустройства не следует включать на полную громкость в или прослушивать записи в таком режиме в течение очень длительного времени. Нагревание может вызвать преждевременный выход из строя динамиков и выходных каскадов усилителя. Никогда не включайте стерео оборудование без динамиков или с непредусмотренным числом этих компонентов. Импеданс динамиков всегда должен быть согласован с импедансом выходных усилителей, иначе может произойти поломка прибора.
Периодически прочищайте и размагничивайте магнитофонные головки. Это не только предотвратит возникновение неисправностей, но и повысит удовольствие от прослушивания.
Телевизоры, так же, как и другие типы приемников, следует использовать аккуратно. Не злоупотребляйте переключением каналов. Сохраняйте правильную настройку органов управления и заменяйте Сломанные детали.
Вопросы для самоконтроля
211
Периодическая чистка приемника может нередко предотвратить возникновение неисправности. Загрязненные схемы могут привести к увеличению тепла, усиливая износ компонентов. Кроме того, пыльная, грязная электронно-лучевая трубка может вызвать дуговой разряд высокого напряжения и недостаток яркости. Каждое шасси следует регулярно очищать струей сжатого воздуха или пылесосом.
Не допускайте перегрева телевизора или контакта с влагой. И тепло и влага могут разрушить компоненты схемы. Кроме того, сильная влажность воздуха (в подвалах и т.п.) может вызвать образование дугового разряда. Не устанавливайте телевизор вблизи нагревательных систем. Не накрывайте телевизор декоративными материалами, которые могут помешать нормальной вентиляции.
Помните о мерах предосторожности. Всегда устанавливайте на место щиты и экраны после проведения технического обслуживания. Не заменяйте полярную вилку на вилку без фиксированного положения контактов. Могут случаться сильные удары током. После пайки проверьте на наличие брызг припоя, холодную пайку или поврежденную изоляцию.
Проверяйте возможную утечку переменного тока на открытых металлических частях - корпусах приемников, ручках управления и т.д. Для этих целей можно использовать вольтметр переменного тока с резистором 1500 ОмхЮ Вт и шунтирующим конденсатором 0,15 мкФх150 В между металлической деталью и землей. Значения выше 0,75 В (или 0,5 мА переменного тока) говорят о потенциальной опасности и необходимости принятия мер.
Вопросы для самоконтроля
Выберите правильный ответ:
1.	Звуковая частота находится в диапазоне:
а)	400-40 000Гц;
б)	20-20 000 Гц;
в)	100-10 000 Гц;
г)	ничего из перечисленного.
2.	Модулированная волна радиочастоты состоит из:
а)	высокочастотная волна и несущая;
б)	высокочастотная волна и радиоволна;
в)	волна несущей частоты и высокочастотная волна;
г)	ничего из перечисленного.
3.	Какое из следующих устройств демодулирует модулированную радиоволну:
а)	усилитель высокой частоты;
б)	усилитель промежуточной частоты;
в)	смеситель;
г)	детектор.
4.	В большинстве смесителей частота генератора составляет час-
тоты несущей входного сигнала:
а)	меньше;
212
ГЛАВА 6. Сервисное обслуживание радио- и телевизионной аппаратуры
в)	равна;
г)	ничего из перечисленного.
5.	Двухтактный усилитель требует:
а)	разделитель со смещением фазы 180°;
б)	инвертор со смещением фазы 90°;
в)	оба: «а» и «б»;
г)	ничего из перечисленного.
6.	Стабилитрон, в котором предполагается короткое замыкание, можно проверить с помощью:
а)	шунтирования;
б)	отсоединения одного из выводов диода;
в)	обхода диода;
г)	ничего из перечисленного.
7.	Какой каскад приемника используется для уменьшения затухания сигнала и поддержания постоянного уровня звука?
а)	детектор
б)	усилитель промежуточной частоты;
в)	усилитель низкой частоты;
г)	усилитель высокой частоты;
Д) АРУ.
8.	При приеме с разделением каналов монофонический приемник использует:
а)	только подавленный сигнал 19 кГц;
б)	только сигнал боковой полосы L - R;
в)	только сигнал несущей L + R;
г)	все перечисленные.
9.	Гул в динамике чаще всего является следствием неисправного:
а)	диода;
б)	транзистора;
в)	фильтра;
г)	ничего из перечисленного.
10.	Температурно-зависимые компоненты можно проверить с помощью:
а)	нагревания и охлаждения;
б)	постукивания;
в)	шунтирования;
г)	ничего из перечисленного.
11.	При поиске неисправностей совершенно неработающего приемника следует проверить:
а)	выключатель питания;
б)	диоды источника питания;
в)	плавкий предохранитель;
г)	обрыв нити катода.
12.	Для правильного разделения каналов разность должна составлять:
а)	5 дБ;
б)	10 дБ;
Вопросы для самоконтроля
213
в)	20 дБ;
г)	40 дБ;
13.	Грязную головку магнитофона следует очистить с помощью:
а)	керосина;
б)	травящего раствора;
в)	изопропилового спирта;
г)	любого из перечисленных.
14.	Если один из транзисторов двухтактного усилителя неисправен, то следует: а) заменить только его;
б)	заменить оба;
в)	«а» или «б»;
г)	ничего из перечисленного.
15.	Закороченный конденсатор можно проверить с помощью:
а)	шунтирования
б)	замены
в)	обоими способами: «а» и «б»;
г)	всеми указанными способами.
16.	Неисправность, которая вызывает уменьшение громкости, недостаточный контроль высоких частот и искажения:
а)	неисправный узел АРУ;
б)	неисправный потенциометр управления громкостью;
в)	грязная головка;
г)	неисправный двигатель и привод.
17.	Осциллограф является эффективным средством для локализации неисправных каскадов, поскольку он может показать:
а)	форму сигнала;
б)	частотную характеристику каскада;
в)	шум в сигнале;
г)	все перечисленное.
18.	Если приемник издает скрипящие, воющие или другие подобные звуки, наиболее вероятной причиной является:
а)	транзистор.
б)	фильтрующий конденсатор;
в)	разрядившаяся батарея питания;
г)	резистор.
19.	Когда вы проверяете сопротивление фазоинвертирующего усилителя:
а)	между общей точкой и Vcc должно быть малое сопротивление;
б)	между общей точкой и землей должно быть малое сопротивление;
в)	измерения сопротивления в пп. «а» и «б» должны давать разные значения;
г)	измерения сопротивления в пп. «а» и «б» должны давать одинаковые значения.
20.	Когда вы используете омметр для идентификации короткого замыкания, омметр должен показывать:
а)	0;
б)	бесконечность;
214
ГЛАВА 6. Сервисное обслуживание радио- и телевизионной аппаратуры
в)	100 кОм;
г)	1 МОм.
21.	Если настройка сигнала приемника ЧМ нестабильна, возможной причиной является:
а)	неисправная схема АРЧ;
б)	неисправная схема генератора;
в)	короткое замыкание или обрыв в компоненте АРЧ;
г)	все перечисленные.
22.	Какие из следующих каскадов являются общими для приемников AM и ЧМ?
а)	входной контур, генератор, детектор, усилитель низкой частоты;
б)	усилитель высокой частоты, смеситель, усилитель промежуточной частоты, усилитель низкой частоты;
в)	генератор, усилитель высокой частоты, частотный дискриминатор, детектор;
г)	тюнер, усилитель промежуточной частоты, детектор, усилитель низкой частоты.
23.	Детектор AM выполняет две основные функции приемника:
а)	усилителя и фильтра;
б)	буфера и усилителя;
в)	буфера и детектора;
г)	выпрямителя и детектора.
24.	Один набор из 262,5 строк представляет собой:
а)	поле;
б)	кадр;
в)	цикл;
г)	интерфейсный набор.
25.	Общее количество 525 строк образуют:
а)	поле;
б)	кадр;
в)	цикл;
г)	интерфейсный набор.
26.	Количество кадров в секунду составляет:
а)	20;
б)	30;
в)	60;
г)	120.
27.	Генератор развертки по вертикали имеет частоту:
а)	20 Гц;
б)	30 Гц;
в)	60 Гц;
г)	120 Гц.
28.	1енератор строчной развертки имеет частоту:
а)	60 Гц;
б)	15750 Гц;
Вопросы для самоконтроля
215
в)	3,58 МГц;
г)	45,75 МГц;
29.	Звуковой и видеосигнал разделяются:
а)	каскадом промежуточной частоты;
б)	видеодетектором;
в)	видеоусилителем;
г)	схемой выделения сигналов цветовой синхронизации.
30.	Импульсы горизонтальной и вертикальной развертки разделяются:
а)	схемой АРЧ;
б)	секцией высокого напряжения;
в)	схемой выделения сигнала синхронизации;
г)	АРУ.
31.	Если и звук и изображение слабые и искаженные, наиболее вероятной причиной является неисправность:
а)	АРЧ;
б)	тюнера;
в)	секции обработки звука;
г)	секции обработки сигнала изображения.
32.	Отсутствие растрового изображения часто свидетельствует о:
а)	отсутствии телевизионного сигнала;
б)	отсутствии видеосигнала;
в)	отсутствии АРУ;
г)	отсутствии высокого напряжения.
33.	Горизонтальная линия в средней части экрана является чаще всего признаком неисправности в:
а)	селектора каналов;
б)	секции вертикальной развертки;
в)	секции строчной развертки;
г)	секции обработки видеосигнала.
34.	Медленно поднимающиеся светлые фоновые полосы в телевизоре возникают из-за неисправного:
а)	выпрямителя;
б)	трубки;
в)	трансформатора высокого напряжения;
г)	фильтра.
35.	Серебристое, нефокусированное изображение является признаком неисправности:
а)	выпрямителя;
б)	трубки;
в)	трансформатора высокого напряжения;
г)	фильтра.
36.	Перегруженное изображение можно во многих случаях исправить, отрегулировав:
а)	генератор вертикальной развертки;
б)	генератор строчной развертки;
216
ГЛАВА 6. Сервисное обслуживание радио- и телевизионной аппаратуры
в)	АРУ;
г)	схему выключения канала цветности.
37.	Характеристику ярких, сильных цветов часто называют:
а)	оттенок цвета;
б)	яркость;
в)	насыщенность;
г)	цветность.
38.	Воспринимаемая яркость называется:
а)	оттенок цвета;
б)	яркость;
в)	насыщенность;
г)	цветность.
39.	Наведение всех трех цветовых прожекторов на одну точку называется: а) демодуляция;
б)	конфетти;
в)	расфокусирование;
г)	сведение лучей.
40.	Цветные конфетти можно устранить, отрегулировав:
а)	усилитель сигнала цветности;
б)	детектор цвета;
в)	схему выключения канала цветности;
г)	генератор цвета.
41.	Наличие цветных полос часто говорит о неисправности в схеме:
а)	катушки;
б)	строчной развертки;
в)	схемы выделения сигналов синхронизации;
г)	усилитель сигналов цветности.
42.	Перед началом сведения лучей необходимо выполнить:
а)	получение серой шкалы;
б)	размагничивание;
в)	установку экрана;
г)	выравнивание.
43.	При работе с телевизионными схемами следует использовать:
а)	неполяризованную вилку;
б)	генератор шума;
в)	изолирующий трансформатор;
г)	размагничивающую катушку.
Вопросы и проблемы
1.	Опишите формирование и характеристики модулированной радиоволны.
2.	Что такое кристаллический детектор?
3.	Нарисуйте блок-схему супергетеродинного приемника.
4.	Почему схема разделения требует двухтактного усилителя?
5.	Расскажите о ремонте полностью неработающего радиоприемника.
Вопросы для самоконтроля
217
6.	Что может стать причиной появления в радиоприемнике скрипящих, воющих и других подобных звуков?
7.	Как можно локализовать температурно-зависимый компонент в радиоприемнике?
8.	Что такое устройство размагничивания головок и для чего оно используется?
9.	Что такое стробоскоп?
10.	Расскажите о процедуре корректировки медленно вращающегося опорного диска проигрывателя.
11.	Расскажите о процедуре проверки стабилитрона, в котором предполагается короткое замыкание.
12.	Расскажите, как чистить головку магнитофона.
13.	Что такое генератор шума?
14.	Перечислите некоторые типы оборудования шумоподавления.
15.	Какая разница между методами шунтирования конденсатора и замены конденсатора?
16.	Нарисуйте блок-схему черно-белого телевизора по памяти.
17.	Расскажите об основных функциях каждой схемы черно-белого телевизора.
18.	Расскажите об основных проблемах, связанных с источником питания телевизионного приемника.
19.	Расскажите, что происходит с изображением на экране ЭЛТ при слабой эмиссии.
20.	Как можно улучшить изображения при слабой эмиссии трубки?
21.	Как может мастер по ремонту определить, вызвано ли перемещение изображения по вертикали проблемами в генераторе вертикальной развертки или синхронизации по вертикали?
22.	Какой каскад телевизора наиболее вероятно неисправен при трапециевидных искажениях изображения?
23.	Что такое конфетти?
24.	Какие цвета являются признаком постоянного и переменного высокого напряжения.
25.	Расскажите, как мастер по ремонту может определить, вызваны ли помехи типа снег тюнером или антенной.
26.	Что означают термины оттенок, насыщенность, цветность и яркость?
27.	Расскажите о назначении каждой секции цветного телевизора
28.	Какую секцию телевизора следует проверить, если на изображении присутствуют цветные полосы?
29.	Какая секция телевизора является наиболее вероятным источником проблем слабых цветов?
30.	Какие предосторожности необходимо соблюдать при извлечении приборов поверхностного монтажа?
Глава У
Сервисное обслуживание цифровых схем
До сих пор, большая часть материала была посвящена сервисному обслуживанию систем промышленного и бытового назначения и их компонентов - другими словами, аналоговых устройств. В настоящее время цифровые системы постепенно занимают место аналоговых.
Цифровые схемы во многих случаях имеют ряд преимуществ: большую надежность, отсутствие шума, легкость в построении интерфейсов с компьютерами. По сути, электронно-вычислительные машины представляют собой набор цифровых схем.
В настоящее время конструирование телевизионной и радиоаппаратуры, устройств бытового назначения и персональных компьютеров развивается в направлении почти исключительного использования цифровых схем. Те же самые процессы постепенно происходят в промышленных системах управления.
Эта глава рассматривает основы современной техники и методы с'ервисного обслуживания обычных цифровых схем.
Основные сведения
Логика-наука о правильном рассуждении. Мы используем ее каждый день, принимая решения и познавая мир вокруг. Многие из наших рассуждений можно представить в виде последовательности выражений: если - то. Рассмотрим, например, следующее утверждение:
Если у меня будет час времени, и дождя не будет, и газонокосилка заведется, то я постригу газон. Заметьте, что слово если сопровождается тремя условиями, каждое из которых может быть истинно или ложно. Союз и означает, что все
Логические функции
219
условия должны быть выполнены (истинны), чтобы выполнилось выражение, следующее за то, Цифровая логика использует электронные схемы для комбинирования событий, которые могут быть представлены как истинные или ложные для получения конечного вывода - решения.
Двоичная система счисления
Цифровые системы требуют такого входа, который есть или истинный или ложный, да или. нет, включено или выключено. Следовательно, должен быть способ представить эти два условия в электронных схемах, которые используются для комбинации входных условий. Это выполняется за счет подачи определенного напряжения для представления уровня логической 1 и другого напряжения для представления уровня логического 0.
Например, во многих популярных схемах 5 В представляет логическую 1, а 0 В -логический 0. Поэтому уровень логической 1 часто называется высоким, а уровень логического 0 - низким. В некоторых системах 1 рассматривается как «истина», «да» или включено, а 0 представляет «ложь», «нет» или выключено. Это называется положительной логикой. В системе с отрицательной логикой 1 представляет «ложь», а 0 - истину.
Логические функции
Логика И
Во многих электронных системах для комбинирования входных сигналов и получения выходных должны быть приняты логические решения. Рассмотрим микроволновую печь. Логика, определяющая включение и выключение магнетрона (который вырабатывает микроволновую энергию), требует определенных входных сигналов, например:
Рис. 7.1. Переключение с использованием логического И
220
ГЛАВА 7. Сервисное обслуживание цифровых схем
♦	таймер должен быть включен (то есть, установлен не на 0);
♦	нажата кнопка Пуск.
Способ соединения схемы для обеспечения логики, реализующей данную функцию, показан на рис. 7.1.
Эти два входа (переключателя) комбинируются функцией И, то есть для того чтобы выход был «истина», оба входа должны быть «истина».
На рис. 7.2 представлены функции И в виде логических символов, а также таблицу, которая указывает, как комбинируются входные сигналы, она называется таблицей истинности.
На рис. 7.3 представлен упрощенный пример схемы логического И
ВходА Вход В
Таблица истинности схемы логического И	
Входы А В	Выход X
0	0 0	1 1	0 1	1	0 0 0 1
Рис. 7.2. Схема логического И
110 VAC
Рис. 7.3. Использование логического И в микроволновой печи
Логические функции
221
В большинстве микроволновых печей есть выключатель, представляющий собой кнопку без фиксации. Как может печь продолжать работать при установленном таймере и кнопке Пуск, которая была нажата, а затем отпущена? Очевидно, что этого не добиться с помощью только функции И. В современных микроволновых печах эта операция осуществляется при содействии микропроцессора. Мы рассмотрим эту тему в главе 9. Для учебных целей мы подробнее остановимся на том, как можно управлять микроволновой печью с помощью цифровых логических схем.
Логика ИЛИ
При применении кнопки в микроволновой печи можно сформулировать проблему следующим образом. Магнетрон должен быть включен, если:
♦	таймер установлен И нажимается кнопка Пуск;
♦	таймер установлен И магнетрон уже включен.
ВходА Вход В
Таблица истинности схемы ИЛИ	
Входы А В	Выход X
0	0 0	1 1	0 1	1	0 1 1 1
Рис. 7.4. Схема логического ИЛИ
Рис. 7.5. Управляющая логика микроволновой печи
222
ГЛАВА 7. Сервисное обслуживание цифровых схем
Обратите внимание, что пока выражение А или В истинно, выход должен быть «истина». Только если А и В «ложь», выход будет «ложь».
На рис. 7.4 приведены обозначение и таблица истинности для логической функции ИЛИ.
На рис. 7.5 показана полная логическая схема управления микроволновой печью.
Логика НЕ
Третий базовый элемент цифровой логики - это функция, которая позволяет инвертировать логический сигнал или найти его дополнительную величину. Часто необходимо показать, что событие не случилось. В примере с микроволновой печью мы НЕ услышим звуковой сигнал, и дисплей не перейдет в режим часов до тех пор, пока не истечет предварительно установленное время работы.
На рис. 7.6 приводится символическое обозначение инвертора, таблица истинности и пример случая, когда таймер не включен.
+5V
Закрыт = таймер включен (логическая 1)
Вход
К логической схеме
К схеме звонка
Рис. 7.6. Инвертор
Выход
X
Обычный способ показать инверсию сигнала заключается в знаке «!» перед названием сигнала или чертой над названием сигнала. Это обозначение часто используется также для того, чтобы показать, что активный уровень сигнала низкий. Например, если вход схемы обозначен IRESET, это означает, что вход будет иметь низкий уровень при нажатии кнопки RESET. Инвертор может иметь только один вход и один выход.
Схемы И-НЕ и ИЛИ-НЕ
Схема И-НЕ - комбинация функции И, а также функции НЕ. Ее можно представлять как схему И с активным низким выходом, который имеет низкое значение только тогда, когда все входные сигналы высокие. На рис. 7.7 показано обозначение и таблицу истинности для двухвходовой схемы НЕ-И.
Логические функции
223
ВходА Вход В
Выход
X
Таблица истинности схемы И-НЕ		
Входы		Выход
А	В	X
0	0	1
0	1	1
1	0	1
1	1	0
Рис. 7.7. Схема И-НЕ
Комбинация функции ИЛИ и функции НЕ - схема ИЛИ-HE. Она выполняет операцию логическое ИЛИ над двумя входными сигналами и затем инвертирует выходной сигнал. Выходной сигнал будет иметь низкий уровень, когда хотя бы один (или оба) из входных сигналов имеет высокий уровень. На рис. 7.8 показано обозначение и таблица истинности для двухвходовой схемы ИЛИ-НЕ.
ВходА
Вход В
Выход
X
2_ 3
Таблица истинности схемы ИЛИ-НЕ		
Е А	(ходы В	Выход X
0	0	1
0	1	0
1	0	0
1	1	0
Рис. 7.8. Схема ИЛИ-НЕ
При необходимости схемы могут выполнять операции с более чем двумя входами. Например, устройство управления микроволновой печи может иметь некоторые ограничения на работу - от замка двери и т.п. Другими словами, магнетрон не будет включаться до тех пор, пока не выполнены условия: таймер установлен, нажата кнопка пуска и дверь закрыта. Мы имеем здесь три переменных, с которыми выполняется операция И, что лучше всего можно реализовать с помощью схемы И с тремя входами. На рис. 7.9 показана схема И-НЕ, ее таблица истинности и способ применения ее в устройстве управления микроволновой прим
224
ГЛАВА 7. Сервисное обслуживание цифровых схем
Исключающее ИЛИ
Последний тип логической функции - это Исключающее ИЛИ. Таблица истинности этой функции похожа на таблицу ИЛИ, но здесь два высоких входных сигнала дают низкий уровень на выходе, как показано на рис. 7.10. Эта схема может использоваться для сравнения уровней двух логических сигналов с целью определения, одинаковы ли они. Если выход 0, они одинаковы. Если выход 1, они разные.
Рис. 7.10. Схема Исключающее ИЛИ
Серии цифровых логических приборов
225
Другой вариант использования функции Исключающее ИЛИ состоит в избирательном инвертировании или не инвертировании сигнала. Посмотрите на временную диаграмму на рис. 7.11.
Входной сигнал 1
2 )]	\ *3 Выходной сигнал
Управляющий сигнал INVERT/BUFFER
Временная диаграмма
Входной сигнал
Управляющий сигнал INVERT/BUFFER __________________|
Выходной сигнал
Буферизация	Инвертирование
Рис. 7.11. Временная диаграмма схемы Исключающее ИЛИ
Когда управляющий вход имеет низкий уровень, то выходной сигнал совпадает с входным. Если на управляющий вход подан высокий уровень, входной сигнал инвертируется. Когда сигнал является управляющим, как в этом примере, его помечают, чтобы показать, какой режим должна давать схема при высоком уровне управляющего сигнала и какой при низком. В этом примере название управляющего сигнала INVERT/BUFFER (инвертирование/буферизация). Это означает, что если сигнал на этой линии имеет высокий уровень, то входной сигнал инвертируется, если же этот сигнал имеет низкий уровень, то происходит простая передача (буферизация) сигнала.
Буфер представляет собой устройство, которое дает на выходе такой же логический уровень, как на входе, но при необходимости может обеспечивать дополнительный ток.
Серии цифровых логических приборов
Концепции построения цифровых устройств не новы. Множество несложных приборов построено сегодня на цифровых интегральных микросхемах. После появления цифровых интегральных микросхем (ЦИМС) для реализации цифровых логических схем были выбраны несколько технологий. Каждая из них применяется при производстве деталей определенных групп. Этот раздел рассматривает серии, которые могут с наибольшей вероятностью встретиться в оборудовании, выпущенном за последние 25 лет.
226
ГЛАВА 7. Сервисное обслуживание цифровых схем
пл
Транзисторно-транзисторная логика (ТТЛ) очень широко использовалась для построения цифровых схем. Если не учитывать историю происхождения такого названия, оно может показаться избыточным. Ранние логические схемы основывались на резисторно-транзисторной логике (РТЛ) и диодно-транзисторную логике (ДТЛ).
ТТЛ используется более 25 лет, и ее базовый формат не изменился, хотя технология изготовления ИМС улучшилась и внутренние компоненты модифицировались, что повысило быстродействие и уменьшило энергопотребление.
«Гербом» семейства ТТЛ является префикс 74 на номере детали. Изначально ИМС ТТЛ имели номер 74хх. Например, микросхема с номером 7400 представляла собой 4 двувходовых схемы И-НЕ (то есть 4 схемы И-НЕ с двумя входами в едином кристалле ИМС). Схема 7404 представляла собой шесть инверторов в одном корпусе. Затем возникла необходимость в более быстродействующих логических схемах. За счет уменьшения номиналов внутренних резисторов в схемах ТТЛ удалось увеличить частоту переключения (но и рассеивание энергии), в результате появилась новая серия 74Н (высокоскоростная).
Другие применения требовали меньшего рассеивания энергии, но не нуждались в высоком быстродействии. Так появилась серия 74 L (с низким потреблением энергии). Были разработаны транзисторы Шоттки, не достигающего глубокого насыщения в открытом состоянии, вследствие чего могли выключаться быстрее, чем обычные биполярные транзисторы, что привело к созданию серии 74S. Комбинация технологии с низким потреблением и транзисторами Шоттки дало серию 74 LS.
Спустя годы были разработаны способы изготовления транзисторов, которые быстрее переключаются и имеют меньшее энергопотребление. Новые технологии породили усовершенствованные схемы Шоттки 74 AS, модернизированные схемы Шоттки с низким потреблением ALS, высокоскоростную 74 F серии семейства ТТЛ. Эти приборы использовались в случаях, где было необходимо высокое быстродействие.
Во всем семействе ТТЛ прибор с одинаковым номером детали совместимым с любым другим прибором семейства, вывод соответствовал выводу. 74LS00 также представляет собой четыре двухвходовых схемы И-НЕ, как и 74ALS00, 74S00 и т.д. У разных серий может отличаться только быстродействие, требования к энергопотреблению и спецификации входных и выходных токов.
Когда возникает подозрение, что деталь неисправна, обычно она просто заменяется другой, а специалист выясняет, устранит ли это проблему. Достаточно часто в схеме используются детали разных серий. Предположим, например, что возникла неисправность микросхемы 7408, но у вас на складе есть только 74LS08.
Если замена стандартной микросхемы ТТЛ 7408 на 74LS08 решает проблему, то, вероятно, 7408 неисправна.
Более того, если замена на микросхему 74LS не решает проблемы или появляются другие симптомы, это не обязательно означает, что 7408 исправна, и
Серии цифровых логических приборов
227
очень вероятно, что ваша новая деталь была подвергнута воздействию, выходящему за пределы рабочего диапазона.
Другой характеристикой всех устройств ТТЛ является напряжение источника питания. Каждая микросхема имеет вывод, помеченный Vcc (напряжение питания для коллекторов). Номинальная величина Vcc для схем ТТЛ всегда составляет 5 В. Детальные требования к напряжению и другие технические нюансы можно найти в справочнике по ТТЛ. К счастью, спецификации почти идентичны у всех изготовителей.
На рис. 7.12 показаны характеристики ТТЛ фирмы Texas Instruments.
recommended operating conditions
	SN54LS00	SN74LS00	UNIT
	MIN NOM MAX	MIN NOM MAX	
VCC Supply voltage	4,5	5	5,5	4,75	5 5,25	V
V|H High - level input voltage	2	2	V
V||_ Low - level input voltage	0,7	0,8	V
‘OH High - level output current	-0,4	-0,4	mA
Iql Low - level output current	4	8	mA
TA Operating free air temperature	-55	125	0	70	•c
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER	TEST CONDITIONS t	SN54LS00		SN74LS00		UNIT
		MIN TYP|	MAX	MIN TYP|	MAX	
VCC	VCc = MIN, l| = -18mA	-1.5		-1,5		V
VOH	VCc = MIN, V|L = MAX, lOH = -0,4mA	2,5 3,4		2,7 3,4		V
	Vcc = MIN, VIH = 2V, Iql = 4 mA	0,25	0,4	0,25	0,4	V
*OL	VCc = MIN, VIH = 2V« Iql = 8 mA			0,35	0,5	V
'OL	VCc = MAX. V| = 7V	0,1		0.1		mA
Ьн	Vcc = MAX« V| = 2,7V	20		20		цА
’IL	Vcc = MAX’ V| = 0,4V	-0,4		-0,4		mA
os§	VCC = MAX	-20	-100	-20	-100	mA
’cch	VCc = MAX, V| = 0V	0,8	16	0,3	1.6	mA
’CCL	Vcc = MAX. V|=4,5V	24	44	24	44	mA
t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
| All typical values are at Vcc = 5 V, TA = 25*C
§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second
switching characteristics, Vcc = 5 V, TA = 25’C (see note 2)
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP MAX	UNIT
tpLH	A or В	Y	RL=2kQ CL=15pF	9	15	ns
tpHL				10	15	ns
NOTE 2: Load circuit and voltage wavefotms are shown in Section 1
Рис. 7.12. Спецификация микросхемы 74LS00
Первая часть спецификации показывает абсолютные максимальные значения для входов прибора. Вторая - характеристики напряжения и тока на входе и выходе. Последняя часть демонстрирует характеристики переключения прибора.
228
ГЛАВА 7. Сервисное обслуживание цифровых схем
Уровень логической 1 в схемах с ТТЛ считается равным 5 В, а логический 0 -равным О В. Спецификация показывает реальные пределы этих уровней. Например, Voh может иметь любое значение выше 2,4 В. Это означает, что если выход не перегружен, то гарантируется высокий уровень выходного сигнала больше 2,4 В. Параметр Vih показывает, что любое напряжение, поданное на вход этой схемы, большее 2,0 В, будет рассматриваться как высокий логический уровень. На рис. 7.13 показаны определения уровней для схем с ТТЛ. Если в схеме ТТЛ какие-либо измерения показывают 0,4-2,4 В, судя по всему, имеет место неисправность.
5.0
4.0
Диапазон логического уровня «высокий»
Vih
Диапазон логического уровня «высокий»
V|H
Граница зоны неопределенности логического уровня «высокий»
....f......................4...........
Диапазон логического уровня «низкий» V|L
Запрещенный диапазон ......................:.......................4.......... Граница зоны неопределенности логического уровня «низкий» Диапазон логического “Т уровня «низкий» Ущ т
Входы	Выходы
Рис. 7.13. Определения напряжений для логики ТТЛ
Спецификации по входному току (lih и lil) показывают величины втекающего и вытекающего токов в зависимости от того, какая логика используется (положительная или отрицательная). Эта информация помогает определить, может ли другой прибор вызвать срабатывание данной схемы. Спецификации выходного тока (loh или lol) показывают, какова должна быть максимальная нагрузка. Например, lohmax 400 mi0l означает, что прибор не должен иметь ток нагрузки более 400 мкА.
Перегрузка смещает выход схемы в запрещенный диапазон
Рис. 7.14. Перегрузка выхода прибора ТТЛ при использовании светодиода для тестирования
Светодиод используется для «тестирования» уровня логических сигналов
Серии цифровым логических приборов
229
Распространенной ошибкой при поиске неисправностей экспериментальных схем является использование светодиода для определения логического уровня выхода. Светодиод на рис. 7.14 (который будет потреблять ток 5-10 мА) перегружает выход схемы, к которой он подключен.
Он уменьшит выходное напряжения до уровня менее 2 В, что может быть не признано в качестве высокого уровня следующей микросхемой. Правильный способ проведения такого теста будет показан дальше в этой главе.
Для того чтобы принимать разумные решения при поиске неисправностей, важно также понимать устройство электрической схемы, которая помещена в корпус ИМС. Большинство приборов ТТЛ имеют одинаковую базовую выходную схему. На рис. 7.15 показана схема, которая называется выходным двухтранзисторным каскодом.
 Каскод - тип схемы, образованной последовательным соединением двух тран-зисторов, причем эмиттер верхнего транзистора соединен с коллектором нижнего. Но в каскоде транзисторы, как правило, работают в активном, а не в.клю-чевом режиме, поэтому выходной каскад ТТЛ проще считать противофазно работающими ключами.
Двухтранзисторпый каскод образован R4, Q3, D2, Q4. Его задача заключается в том, чтобы переключить напряжение 5 В на выход при высоком уровне выходного сигнала (с использованием R4, Q3, D2), и соединить вход с землей 0 В при низком уровне выходного сигнала (с использованием Q4). Обратите внимание на различия между двумя переключающими цепями. Когда выход низкий, включается Q4 и его коллектор имеет напряжение очень близкое к земле (Vce(sat) = 0). Это образует очень результативный и эффектный переключатель.
Рис. 7.15. Схема выходного двутранзисторного каскода ТТЛ
С другой стороны, верхняя часть двутранзисторного каскода должна подавать ток от источника питания для обеспечения высокого логического уровня.
230
ГЛАВА 7. Сервисное обслуживание цифровых схем
Этот ток должен пройти через R4, Q3, D2 прежде, чем он попадет на выходной вывод и нагрузку. Поскольку на диоде падение напряжения составляет 0,7 В, на резисторе R4 также присутствует напряжение, пропорциональное току нагрузки, то выходное напряжение определенно не станет близко к 5 В. В действительности выход ТТЛ обычно меньше 4 В, а часто даже меньше, чем 3,5 В, даже при минимальной нагрузке.
Поэтому очевидно, что каскад гораздо лучше пропускает ток от нагрузки на землю, чем ток от источника с Усс на нагрузку. Каскадный выход ТТЛ лучше выполняет отвод тока, поскольку схема переключения, контролирующая соединение выхода с землей, более эффективна, чем переключатель на Усс.
Важное значение имеет также природа входных сигналов ТТЛ. Когда на вход подается низкий уровень, ток течет от Усс через R1, через бузу Q1 на эмиттер и затем из входа. Когда используется положительная логика, тока почти нет. Вход ТТЛ является гораздо большей нагрузкой для источника выходного сигнала с низким выходом, чем для источника с высоким выходом. Это объясняет также, почему вход схемы ТТЛ, в которой произошел обрыв, работает так, как будто на него был подан сигнал высокого уровня.
Есть также два других типа выходных цепей, которые используются в некоторых приборах ТТЛ. Они называются схемами с выходным транзистором с открытым коллектором и схемами с выходом с тремя состояниями.
Схема с открытым коллектором показана на рис. 7.16. Заметьте, что в ней нет верхней части двухтранзисторного выходного каскода.
Рис. 7.16. Схема ТТЛ с выходным транзистором с открытым коллектором
Этот тип востребован, когда пытаются использовать схему ТТЛ для работы с прибором, который не рассчитан на 5 В, как показано на рис. 7.17.
Выход таких приборов не может дать напряжение, даже когда логический уровень высок. Часто вместо верхней части каскадного выхода с этими приборами используется внешний резистор, подключенный к цепи питания, который должен обеспечить высокий уровень сигнала.
Можно соединить вместе выходы нескольких схем с открытым коллектором, как показано на рис. 7.18.
Серии цифровых логических приборов
231
VCC
Рис. 7.17. Работа с нагрузкой, требующей высокого напряжения
Повышающий резистор
7409
Рис. 7.18. «Монтажное И» с шестью входами на основе использования схем с открытым коллектором
Поскольку ни одна их них не выдает высокого выходного уровня напряжения, не возникает соединений между уровнями высокий и низкий, как имело бы место при использовании каскадного выхода. Единственный способ сделать выход высоким, заключается в том, чтобы сделать высоким уровень всех схем. Поэтому такое подключение называется «Монтажное И».
Выходы ТТЛ с тремя состояниями могут отключать одновременно и верхнюю, и нижнюю часть двухтранзисторного каскодного выхода с помощью воздействия на управляющий вход кристалла. Это переводит выход в состояние «высокого импеданса», которое используется, когда несколько выходов разделяют одну линию соединения. В главе 9 эта концепция рассмотрена более подробно.
КМОП
Вскоре после появления ТТЛ была разработана новая технология, в которой использовался другой тип транзистора, не такой, как в схемах ТТЛ. Металл-ок-сид-полупроводниковые полевые транзисторы MOSFET (полевые МОП-тран-зисторы) имеют 3 вывода, которые называются сток, исток и затвор и соответствуют коллектору, эмиттеру и базе биполярного транзистора.
Эти транзисторы имеют очень высокое входное сопротивление между затвором и двумя другими выводами. Когда такие транзисторы используются для построения логических схем с помощью комбинирования дополнительных пар транзисторов, результирующие логические схемы называют комплементарными металл-оксид-полупроводникрвыми CMOS (КМОП).
В 1970-1980 годах схемы КМОП считались приборами с низким потреблением и недостаточным быстродействием. Однако технология улучшилась до такой
232
ГЛАВА 7. Сервисное обслуживание цифровых схем
степени, что КМОП-логика стала не менее быстродействующей, чем большинство серий ТТЛ при значительной экономии мощности. Поэтому большинство новых логических приборов выполняются именно на основе схем КМОП.
Благодаря высокому входному сопротивлению затворов вход схем КМОП почти не потребляет ток от предыдущей схемы. Термин комплементарный означает, что в каждом приборе КМОП два типа транзисторов - полевые МОП-транзисторы n-типа и полевые МОП-транзисторы р-типа.
Первые переключаются (при этом происходит замыкание стока на исток) при подаче положительного напряжения на затвор. Транзисторы p-типа переключаются, когда на затвор подается О В. Схемы потребляют очень малый ток от источника питания вследствие комплементарной природы цепей, как показано на рис. 7.19. Заметьте, что не возникает завершенного пути для тока от Vdd до Vss. Выход замыкается на Vdd при высоком уровне и замыкается на Vss при низком.
Рис. 7.19. Схема ИЛИ-НЕ технологии КМОП
Полевые КМОП-транзисторы, имеют большее по сравнению с биполярными транзисторами сопротивление сток-исток во включенном состоянии в десятки и даже сотни Ом.
Если через полевые КМОП-транзисторы течет слишком большой ток, выходное напряжение рискует превысить допустимый уровень, тогда рассеиваемая мощность разрушит транзистор. Если через выход течет слишком малый ток, напряжение на выходе будет очень близким к величине Vdd или Vss. Характеристики и методы тестирования таких транзисторов описаны в главе 1.
Первым семейством приборов КМОП, которые получили широкое распространение, были ИМС общего назначения серии 4000. Несколько изготовителей выпускают схемы с такими номерами. Некоторые компоненты выпускает фирма
Серии цифровых логических приборов
233
Motorola, но ее номера деталей начинаются на 1, поэтому микросхема из 4 двухвходовых схем И-НЕ 4011 будет обозначаться 14011.
Эти микросхемы имеют преимущество, заключающееся в широком диапазоне напряжений питания в пределах от 3 до 18 В. Логический уровень ВЫСОКИЙ опознается схемой КМОП при любой величине, большей 2/3 Vdd. НИЗКИМ уровнем считается сигнал со значением менее 1 /3 Vdd. Обратите внимание, что если на Vdd подается напряжение питания 5 В, а V - земля, то допустимыми входными сигналами будут 0-1,7 В для уровня НИЗКИЙ и 3,33-5,0 В для уровня ВЫСОКИЙ. Эти определения логических уровней не полностью совместимы с выходными сигналами ТТЛ, поэтому для правильного их различения при совместном использования ТТЛ и КМОП приборов необходимо дополнительное оборудование.
Если схема КМОП должна запускаться выходными сигналами ТТЛ, то обычно принимаются определенные меры предосторожности. Главная проблема заключается в том, что ТТЛ гарантирует только, что ее выход 2,4 В соответствует логическому уровню ВЫСОКИЙ. Вход КМОП требует по меньшей мере 3,3 В для того, чтобы воспринять поступающий сигнал как высокий. Чтобы получить с ТТЛ большее напряжение для логического уровня высокий, часто на выход схемы устанавливается повышающий резистор, как показано на рис. 7.20. Если ТТЛ подключается с КМОП, работающей от источника питания более 5 В, то для передачи логических уровней необходимы более сложные схемы.
Рис. 7.20. Подключение прибора ТТЛ к прибору КМОП
Популярность ИМС ТТЛ и преимущества низкого энергопотребления КМОП были совмещены в серии 74С КМОП. Эти детали идентичны с точки зрения соответствия выводов деталям ТТЛ с тем же номером. Однако их внутренняя схема использует КМОП и имеет входные и выходные спецификации КМОП. Они также работают медленнее, чем приборы ТТЛ.
Серия 74НС предоставляет более быстродействующие детали КМОП, которые конкурируют со стандартными ТТЛ по скорости, но в то же время имеют характеристики КМОП. Эти детали можно считать имеющими интерфейс непосредственно с ТТЛ, поскольку у них иное определение уровня логических сигналов и другие характеристики выходных токов. Серия 74НСТ содержит устройства, заменяющие ТТ. Они изготовлены с помощью технологии КМОП, но обеспечивают логику, совместимую с ТТЛ по входам и выходам. Рассеиваемая
234
ГЛАВА 7. Сервисное обслуживание цифровых схем
мощность 74НСТ не так мала, как у 74НС, но значительно выше, чем у приборов на основе стандартной ТТЛ технологии (табл. 7.1).
Таблица 7.1. Сравнение характеристик семейств логических устройств
Параметр	74хх 74LSXX		74SXX	74ASXX	74LSXX 74НСХХ		74НСТХХ	40ХХ	MECL
Напряжение питания (В) (+)	5	5	5	5	5	5	5	3-18	0
Напряжение питания(В) (-)	0	0	0	0	0	0	0	0	-5,2
Логический уровень 2 высокий (В) МАХ		2	2	2	2	3,2	2	0,7 Vdd	-0,9
Логический уровень 5 высокий (В) MIN		5	5	5	5	5	5	Vdd	0
Логический уровень 0 низкий (В) МАХ		0	0	0	0	0	0	0	-5,2
Логический уровень 0,8 низкий (В) MIN		0,8	0,8	0,8	0,8	0,9	0,8	0,3 Vdd	-1,75
Нагрузочная способность Типичное число разветвлений	10	10	10	40	20	50(10LS)	50	50(10LS)	90
Задержка на прохождение сигнала (нс)	10	9,5	3	4	6	7	8	35	2
Потребляемая мощность в статическом режиме (нВт)	10	2	19	32	5	0,2	0,2	0,12	25
эсл
Эмиттерно-связанная логика (ЭСЛ) - это еще одно семейство логических ИМС, которые реализуют совершенно другой подход. ТТЛ и КМОП-транзисторы используются таким образом, что достигают полного насыщения или находятся в состоянии полной отсечки.
Природа транзисторов требует больше времени, чтобы вывести транзистор из состояния полного насыщения, нежели чем сместить его рабочую точку в пределах линейного участка его характеристики. В схемах ЭСЛ все транзисторы смещаются, оставаясь при этом в зоне между насыщением и отсечкой, образуя очень быстрые логические приборы, которые работают при довольно нестандартных уровнях логических сигналов. ЭСЛ используются, только когда требуется очень высокое быстродействие.
плис
В последние годы развивается совершенно новый метод применения цифровых логических схем, который требует очень гибких устройств, где логическая комбинация входов программируется пользователем для получения желаемого выходного сигнала.
Серии цифровых логических приборов
235
Хотя эта технология имеет много форм и конфигураций, все их можно объединить под одним определением: программируемые логические интегральные схемы (ПЛИС). Они являются любимой игрушкой инженера-проектировщика и ночным кошмаром специалиста по техническому обслуживанию. Для создания логической функции инженер просто задает связь между входами и выходами одним из следующих способов:
♦	с помощью логических уравнений, связывающих входы и выходы;
♦	рисуя схему с помощью программ автоматизированного программирования;
♦	определяя таблицу истинности, связывающую входы и выходы;
♦	описывая работу схемы с использованием языка аппаратных средств HDL.
Специальное программное обеспечение переводит информацию из одного формата, указанного выше, в файлы, используемые для программирования приборов. Программирование заключается в том, что деталь вставляется в специальный программатор, и оператор печатает несколько команд на компьютере. Новейшие приборы не надо даже извлекать из схемы. Они программируются внутри системы с помощью подключения к компьютеру специальным кабелем. Весь процесс, от завершения проектирования до получения готового прибора, занимает несколько секунд. Более того, схему, которая с помощью логических устройств на основе ТТЛ и КМОП занимала целую плату, часто можно выполнить в виде одной ИМС с 20 выводами!
К несчастью, многие изготовители не выпускают документацию о связи входов и выходов ПЛИС. Это оставляет специалиста по техническому обслуживанию с таинственным черным ящиком, чью работу он не может предсказать.
Критическим моментом в поиске неисправностей любой детали является понимание того, как она должна работать, и локализация секций, которые не функционируют.
При работе с дискретной логикой ИМС семейств ТТЛ и КМОП специалист может найти детали в описании и понять правильную работу схемы. Если выяснялось, что компонент неисправен, его можно легко приобрести и заменить. Искать же неисправности в ПЛУ без документации невозможно, поскольку они запрограммированы изготовителем. Только фирма-производитель обладает информацией касательно программирования этой детали, и только ее специалисты могут заменить компонент.
К числу распространенных приборов этой категории относятся однократно программируемые матричные логические схемы ПЛМ и устройства с типовой матричной логикой, которые позволяют перезаписывать информацию несколько раз.
Обычно детали ПЛМС имеют обозначения PAL 16L8 (комбинационная логика) и PAL 16R8 (регистрируемые выходы). GAL 16V8 может использоваться вместо приборов PAL. Большинство сложных ПЛМ сейчас очень широко применяются и содержат больше логических схем и триггеров, что позволяет им легко соединяться для формирования функциональных блоков цифровой схемы в едином программируемом кристалле.
236
ГЛАВА 7. Сервисное обслуживание цифровых схем
Корпуса и идентификация ИМС
Рис. 7.21. Примеры микросхем с двухрядным расположением выводов
Наибольшее распространение получили логические ИМС в корпусах с двухрядным расположением выводов (DIP) с 14, 16, 20, 22, 24 и 28 выводами (рис. 7.21).
Есть несколько методов маркировки вывода 1. Наиболее распространенный - выемка и точка, как показано на рис. 7.22. Маркировка собственно ИМС содержит код изготовителя, номер детали, специальное обозначение и указание типа корпуса. Например, SN74LSOON означает фирму Texas Instruments (SN), ТТЛ (74), на маломощных транзисторах Шоттки, четыре двухвходовых схемы И-НЕ (00) в пластмассовом корпусе DIP (N). Специальные символы и указатели типа корпуса обычно можно найти в справочниках изготовителей. Большинство изготовителей микросхем помещают на детали название фирмы или логотип организации.
Выемка

ючка ......z
Выем . <	1
Вывод 1
Вывод 7
Рис. 7.22. Идентификация выводов микросхемы с двухрядным расположением выводов
Большинство новых микросхем, которые выпускаются для технологий автоматизированного производства, представляют собой приборы для поверхностного монтажа. У них меньшее расстояние между выводами, а сами выводы расположены с четырех сторон. На рис. 7.23 изображены два типа популярных корпусов и их выводы. В табл. 7.2 приведены данные о других типах корпусов.
Рис. 7.23. Идентификация выводов приборов поверхностного монтажа
Природа неисправностей
237
Таблица. 7.2. Корпуса ИМС
Обозначение	Наименование корпуса	Высота	Расстояние между выводами
DIP	Корпус с двухрядным расположением выводов	5,1 мм	2,54 мм
SOIC	ИС в малогабаритном корпусе	2,65 мм	1,27 мм
SSOP	Уменьшенный малогабаритный корпус	2,0 мм	0,65 мм
TSSOP	Тонкий уменьшенный малогабаритный корпус	1,1 мм	0,65 мм
TVSOP	Тонкий сверхмалогабаритный корпус	1,2 мм	0,4 мм
PLCC	Кристаллодержатель с пластиковыми выводами	4,5 мм	1,27 мм
QFP	Плоский корпус с четырехсторонним расположением выводов	4,5 мм	0,635 мм
TQFP	Тонкий корпус с четырехсторонним расположением выводов	1,6 мм	0,5 мм
Природа неисправностей
Сервисное обслуживание цифровых схем обычно считается наиболее простым. Это особенно справедливо для систем, которые надежно работали, а затем в них возникала неисправность, в отличие от новых конструкций, которые требуют отладки при доводке.
Чтобы приведенное правило было справедливо, необходимо соблюдать следующие условия:
♦	понимание работы схемы;
♦	понимание природы возможных неисправностей;
♦	понимание возможных причин неисправностей;
♦	способность читать схемы;
♦	систематический подход к локализации проблем.
В транзисторах обычно возникают неисправности двух типов: короткое замыкание и обрыв. Цифровые схемы состоят, в основном, из транзисторов и поэтому именно они нередко становятся источниками неполадок. Важно понимать влияние короткого замыкания и обрыва на работу конкретной детали и компонентов, с которыми она соединена. Тестирование транзисторов рассматривалось в главе 1. Здесь мы рассмотрим неисправности транзистора применительно к цифровым интегральным микросхемам.
Обрыв
Обрыв означает, что предполагаемый контур протекания тока был каким-либо образом нарушен. Если лампа не работает до тех пор, пока вы не пошевелите провода возле вилки, это свидетельствует о разрыве проводов или обрыве в схеме. Такой же тип неполадки может случиться в цифровой ИМС. Слишком сильный ток мог разрушить кремний, из которого сделан транзистор.
Транзистор вышел из строя, значит он больше не будет включаться. Симптомы этой неполадки напоминают обрыв в схеме. Плохое крепление кристалло-держателя, который ведет к кристаллической пластине, также может привести
238
ГЛАВА 7. Сервисное обслуживание цифровых схем
к обрыву. В любом случае, такая поломка означает, что ток не может больше протекать правильно.
Обрыв в схеме может произойти на входе и на выходе. В результате вход и выход предыдущего устройства электрически разъединены. В зависимости от типа микросхемы она в этом случае будет вести себя по-разному. Посмотрев на схему ТТЛ, вы увидите, что схема с обрывом на входе будет работать, как при приходе логической 1. Следовательно, выход ТТЛ открыт, входы всех схем ТТЛ, подключенных к этому выходу, будут воспринимать всегда логический уровень ВЫСОКИЙ.
Входной сигнал схемы КМОП поступает на затвор полевого КМОП-транзистора. Вход этих микросхем с высоким импедансом может изначально не воспринимать напряжения при обрыве, и считать его логическим уровнем НИЗКИЙ. Через некоторое время, однако, входные токи шумов могут сложиться с входным сигналом и образовать заряд, подобно тому, как это происходит в транзисторе. После накопления достаточного заряда логическая схема может воспринять его как логический уровень ВЫСОКИЙ на входе.
Другая возможность заключается в том, что напряжение на выходе с обрывом будет очень близко к абсолютной границе между высоким и низким логическими уровнями, что вызовет постоянные высокочастотные колебания на выходе прибора. Высокочастотные колебания в цифровой схеме приведут в возрастанию потребления тока, заставляя ее нагреваться. В то же время схемы с обрывом на входе не реагируют на поступающие на них сигналы.
Обрывы на входах и выходах микросхем происходят внутри, но могут быть вызваны и плохими соединениями выводов ИМС с контактами панельки, холодной пайкой, трещинами печатной платы, согнутыми выводами ИМС. Для того чтобы отличить эти проблемы от неисправностей внутри микросхемы, сравните логические сигналы выводов микросхемы с подозрением на неисправность с сигналами выводов правильно соединенной микросхемы.
Короткое замыкание
Короткое замыкание - это тот козел отпущения, которого чаще всего обвиняют во всех электрических проблемах.
Короткое замыкание - непредусмотренное соединение с относительно ма-лым сопротивлением между двумя точками электрической цепи, которое вызывает чрезмерный (часто разрушительный) ток между этими точками.
Создается впечатление, что в 99% случаев, когда люди дают отчет о проблеме, возникшей в электронном оборудовании, они вынуждены давать авторитетный диагноз: «Это было короткое замыкание». В действительности это явление возникает относительно редко и в большинстве устройств его легко обнаружить. Настоящее короткое замыкание в силовой цепи сопровождается такими признаками, как сгоревшие предохранители, клубы дыма, тлеющие угольки, отчетливый запах горелого кремния.
Природа неисправностей
239
К сожалению, в цифровых ИМС ток, который может протекать, обычно ограничен другими элементами схемы, и когда возникает короткое замыкание транзистора, его признаки не очевидны. Короткое замыкание на входе или выходе цифровой схемы обычно означает, что для тока возник контур с низким импедансом от положительного или отрицательного источника питания ИМС. Если через полупроводниковый прибор протекает слишком большой ток, но этот ток все же недостаточен для того, чтобы испарить его, кремниевые соединения разрушаются, и прибор ведет себя как при коротком замыкании.
В устройствах с технологией ТТЛ короткое замыкание транзистора в верхней части выходного каскада приведет к тому, что на выходе транзистора будет постоянный низкий логический уровень, что послужит причиной такого же уровня на входах всех приборов, подключенных к данному выходу, как показано на рис. 7.24.
Рис. 7.24. Короткое замыкание на выходе прибора ТТЛ
Короткое замыкание транзистора в верхней части выходного каскада случается нечасто и его можно даже и не заметить, поскольку схема работает как повышающий резистор.
В схемах КМОП короткое замыкание может возникать на положительной или отрицательной шине питания. Результатом может быть постоянный логический уровень, ВЫСОКИЙ или НИЗКИЙ соответственно.
Другой вариант - запрещенное логическое состояние. Предположим, например, что транзистор вышел из строя таким образом, что он воспринимается как резистор с сопротивлением 100 Ом между выходом и землей. Когда на выходе должен появиться низкий логический уровень, все идет нормально. Когда на выходе должен возникнуть высокий логический уровень, выход становится делителем напряжения, как показано на рис. 7.25. В результате вместо логического уровня ВЫСОКИЙ на выходе возникает запрещенный логический сигнал.
Короткое замыкание на входе имеет те же признаки, что и на выходе. Нередко очень трудно определить, закорочен ли выход, что заставляет входы других схем быть в состоянии НИЗКИЙ или ВЫСОКИЙ, или же закорочен вход, влияя на выход предыдущей схемы.
240
ГЛАВА 7. Сервисное обслуживание цифровых схем
Рис. 7.25. Короткое замыкание на выходе прибора КМОП
Между выводами ИМС также возникает короткое замыкание. Внутренние проблемы такого типа довольно редки. Обычно это связано с перемычками из припоя, остатками проводящего флюса, короткими замыканиями в кабеле или соединениях платы.
Неисправные периферийные компоненты
Цифровые логические ИМС обычно не требуют подключения дополнительных компонентов. Однако в некоторых точках они должны подключаться к входным и выходным частям схемы: переключателям, резисторам, светодиодам. Есть также много ИМС, считающихся цифровыми приборами, которые требуют для своей работы периферийных компонентов. Эти приборы и методы поиска неисправностей в них рассматриваются в следующей главе.
Потенциальные причины неисправностей
Одной из наиболее распространенных причин возникновения неисправностей в цифровых схемах является воздействие тепла. Наиболее уязвимы компоненты, которые должны рассеивать достаточно большое количество тепла, а также расположенные рядом с ними детали. Хотя современные системы невелики по размеру, с меньшим числом компонентов и потреблением энергии, они в настоящее время используют множество плат с несколькими рядами интегральных схем. Тепло, рассеиваемое таким большим количеством ИМС, может быть значительным.
Такие системы должны быть снабжены соответствующей вентиляцией. Для этого существуют вентиляционные прорези, перфорированные шкафы, или небольшие вентиляторы. Ориентируясь на следующие правила, удостоверьтесь в адекватности принятых мер:
Потенциальные причины неисправностей
241
♦	не помещайте предметы на панели с вентиляцией;
♦	не перекрывайте вентиляционные отверстия, расположенные на боковых панелях приборов;
♦	проверяйте работу вентиляторов;
♦	содержите воздушные фильтры в чистоте.
Другой стандартной причиной поломок в цифровых и других электронных деталях являются интенсивные переходные процессы: выбросы напряжения и тока очень часто встречаются в промышленных областях. Они могут попадать в систему через источник питания, наводиться сильными электрическими и магнитными полями вблизи оборудования, могут быть результатом действия обладающих высоким реактивным сопротивлением устройств внутри системы, например двигателей, реле, соленоидов. Наиболее опасным, особенно для бытовой электроники, источником переходных процессов является молния. Эффекты непредсказуемы и в большинстве случаев разрушительны.
Хотя специалист не может прогнозировать влияние указанных выше факторов, есть предосторожности, которые следует соблюдать при работе с оборудованием чтобы не вызвать новых проблем.
Каждая схема, содержащая полевые МОП-транзисторы, очень чувствительна к статическому электричеству. Полевые МОП-транзисторы используют тонкий металл-оксидный изолятор для отделения затвора от кремниевого канала, который разрушается при относительно высоком напряжении (> 50 В). В сухой среде обычная одежда при движении тела может вызвать накопление тысяч вольт статического потенциала. Если не приняты соответствующие меры и схема, с которой вы работаете, имеет другой статический потенциал, то заряд вашего тела и одежды может вызвать разряд через компоненты и выход их из строя.
Чтобы не сжечь схему, вы должны уравнять ее потенциал и потенциал вашего тела. Для этого носите на запястье браслет, соединенный с землей схемы. Все тестовое оборудование должно быть подключено к общей земле (включая паяльник). Следует избегать одежды, которая имеет тенденцию к образованию статического электричества (нейлон, шерсть). Используйте аэрозоли (охлаждающие, средство удаления флюса, очистки контактов), свободные от статического электричества. Как минимум, обязательно коснитесь шасси или детали оборудования, чтобы снять с себя заряд перед тем, как приступить к работе со схемой. Работая с ИМС, по возможности, не касайтесь выводов, держите их в проводящем пеноматериале, чтобы сохранить одинаковый потенциал.
Другое явление, которое может разрушить микросхемы, изготовленные по технологии КМОП, называется тиристорное защелкивание. При производстве комплементарных полевых КМОП транзисторов и соединении их в логические схемы образуется многослойная структура из кремния с проводимостью р-и n-типа. Эти слои могут образовать паразитный тиристор, аноды которого подключены к двум шинам питания и чей управляющий электрод представляет собой выходной вывод логической схемы.
Тиристор- это полупроводниковый прибор, который до подачи тока на управляющий электрод размыкает цепь. При повышении на нем напряжения до
242
ГЛАВА 7. Сервисное обслуживание цифровых схем
определенного уровня тиристор отпирается и до отключения анодного тока создает короткое замыкание. При нормальной работе логической микросхемы КМОП паразитный тиристор никогда не включается. Однако, если на выходной контакт подается слишком большое внешнее напряжение, тиристор включится или «защелкнется», что приведет к протеканию большого тока от Vdd через ИМС к Vss. Через несколько секунд ИМС будет разрушена. Для предотвращения тиристорного защелкивания на входах и выходах приборов КМОП никогда не должно возникать напряжение выше Vdd или ниже Vss. Никогда не подключайте тестовое оборудование типа генератора сигналов к схеме прежде, чем на нее подано питание.
Не вставляйте и не вынимайте печатные платы при включенном оборудовании. Если трудно подключиться к тестовой точке при активированной системе и платам на месте, сначала выключите оборудование и генератор сигналов и выньте плату. Затем подключите генератор и вставьте плату, и включите питание до активации генератора сигналов
Чтение цифровых схем
Для эффективного обслуживания цифровых схем необходимо обладать технической информацией. Как минимум, вам нужна принципиальная схема. Если типы компонентов не указаны на поверхности печатной платы, вам также нужна схема расположения деталей. Некоторые технические руководства дают диаграммы поиска неисправностей, которые помогут вам провести диагностику устройства. Другие пособия описывают тестовые функции и сигналы, которые должны быть в соответствующих контрольных точках.
Схемная документация отличается в зависимости от изготовителя и возраста оборудования. В большинстве схем по-прежнему используются стандартные
Результаты подсчета секунд BCD
74LSO4
Рис. 7.26. Типичная цифровая схема
Поиск и локализация неисправностей
243
логические символы для отдельных схем и обозначения блоков для более сложных цифровых приборов. Для устранения неоднозначности в обозначениях был разработан новый стандарт. Он называется IEEE/ANSI Standard 91-1984. Хотя он и не получил широкого признания необходимо знать о его существовании.
Пример типичной схемы показан на рис. 7.26.
Большинство логических микросхем содержат несколько логических элементов. Проектировщик мог использовать отдельные части различных микросхем в цепях, которые не связаны друг с другом. Например, в этой схеме используется ИМС 74LS00. Два элемента используются как реле пуска/остановки, третий подает тактовые импульсы в счетчик, четвертый нужен для перезагрузки счетчика 2. Все эти элементы физически расположены в одной микросхеме, но электрически распределены по схеме. Некоторые элементы имеют одинаковый номер ИМС с суффиксами, показывающими, что это за элемент. Цифры на входах и выходах показывают номера выводов ИМС. Обратите внимание, что у микросхем 74LS90 выводы имеют и номера, и названия. Это позволяет пользователю понять их функцию, не обращаясь к справочнику по микросхемам.
Обычной практикой для схем является представление логических элементов таким образом, чтобы показать, является ли их вход активным при высоком или низком уровне сигнала. Кружок используется как логический символ, показывающий активные при низком уровне сигнала входы и выходы. Черта над названием сигнала показывает, что он активен при низком уровне. Может быть, это и не очевидно с первого взгляда, но логический элемент ИЛИ с инвертированным входом выполняет ту же логическую функцию, что и элемент И с инвертированным выходом (это явление известно как теорема Де Моргана). Даже хотя ША и ШВ изображены как схемы ИЛИ с входами, возбуждаемыми НИЗКИМ логическим уровнем сигнала, они реализованы на элементах И-НЕ той же ИМС, что и ШС. То же самое касается инвертора U2A. Поскольку входной сигнал активируется при низком уровне (то есть при сбросе уровень на выводе 1 будет низким), он показан как инвертор с кружком на входе. Вывод 2 при сбросе будет иметь уровень высокий, на его выходе показан активно высокий уровень сигнала.
Выходы счетчиков U3 и U4 помечены для того чтобы можно было проследить их связи с другими участками схемы, которые не показаны на этом'черте-же. Входы Start, Stop, Reset подключены к переключателям, которые расположены вне этой платы, и здесь показан номер вывода разъема. Работа этой цифровой схемы рассмотрена в следующей главе.
Поиск и локализация неисправностей
Полное техническое руководство очень полезно и часто необходимо для отыскания неисправности в сложной цифровой схеме. Такие справочные материалы содержат описание рабочих процедур, блок-схемы, теории работы схемы, диаграммы диагностики и поиска неисправностей, а также описанную ранее документацию. Для выяснения первопричин проблемы специалист должен знать, как работает прибор и каковы способы управления им.
244
ГЛАВА 7. Сервисное обслуживание цифровых схем
Если у вас есть диаграмма поиска неисправностей, вы можете по ней протестировать систему шаг за шагом. Это обычно предполагает подачу некоторых входных сигналов или каких-либо известных тестовых сигналов и наблюдение реакции схемы. После чего можно сделать некоторые выводы относительно области, в которой возникла неисправность. Изготовитель оптимизирует диаграмму для минимизации числа необходимых тестов, указывая только те действия, которые приводят к однозначным результатам.
Если диаграммы поиска неисправностей нет в наличии, вы должны решить, какие тесты необходимо провести и какие выходы наблюдать для локализации проблемы. При этом лучше всего начать с блок-схемы системы.
Можно подумать, что сервисное обслуживание - это процесс поиска одного 'или более неисправных компонентов системы.
В действительности его можно более точно определить, как процесс пошагового исключения. Каждый этап поиска неисправностей должен быть спланирован для подтверждения того, что одна из основных секций, схем или деталей работает правильно. Чем большее число секций системы оказались исправным, тем меньше область, в которой приходится искать. Следовательно, надо планировать тесты, которые позволяют исключить максимально большую часть системы. Если вы начнете с проверки отдельных компонентов, вы вряд ли быстро найдете причину проблемы.
Не так давно несколько студентов-инженеров предприняли первую попытку поиска неисправностей электронного оборудования. Объектом служил ультразвуковой терапевтический зонд, который имел очень слабый выходной сигнал. Подход студента, зарегистрированный в журнале ежедневного учета, выглядел следующим образом. «Физиотерапевтическое отделение больницы сообщило о том, что ультразвуковая установка имеет недопустимо низкий выходной сигнал. При проверке печатной платы были обнаружены два больших резистора 470 Ом. На каждом из этих компонентов было проведено измерение сопротивлении и обнаружено, что оно составляет менее 100 Ом. Были заказаны новые резисторы».
Конечно, это пример неправильного использования метода исключения. Первый тест, который был выполнен, предназначен для того, чтобы исключить единственный компонент, никаких признаков неисправности которого не было. Даже если бы этот тест показал, что резисторы исправны, подход случайного выбора и проверки компонентов был бы длинным и скучным. Более того, тест был неправильно проведен. Измерение сопротивления внутри схемы почти всегда показывает значение меньше реального вследствие множества соединений с окружающим цепями.
Правильная процедура заключается в том, чтобы сначала проверить, действительно ли выходной сигнал слабый. Ошибка оператора является причиной многих проблем (но будьте тактичны, когда вы объясняете это оператору). После того как вы определили, что выходной ультразвуковой сигнал действительно имеет недостаточную мощность, следует обратиться к техническому руководству. Низкий выходной сигнал может просто означать, что необходима калибровка или настройка, как в приведенном примере. Только после выполнения калибровки специалист может искать неисправности в схеме.
Поиск и локализация неисправностей
245
Необходимо провести измерения в тестовых точках, расположенных в стратегически важных пунктах схемы, чтобы проверить, соответствуют ли сигналы приведенным в руководстве параметрам. Идеальным местом для начала измерений в подобной ситуации является точка в середине блок-схемы, как показано на рис. 7.27.
Проверьте здесь
Рис. 7.27. Метод половинного деления
Если форма сигнала достаточно близка к приведенной в руководстве, то можно исключить всю первую часть схемы. Этот процесс следует повторять, исключая на каждом этапе половину оставшейся схемы. Такая техника называется «разделяй и властвуй» или «деление пополам». Результатом такой процедуры должна стать локализация неисправности в каком-то конкретном блоке или модуле системы с соответствующим входным сигналом и плохим выходным.
Можно заменить весь модуль, если система построена по модульному принципу. Это наиболее экономичный способ решения проблемы. Ремонтируя печатную плату; приходится проводить поиск неисправностей на уровне компонентов.
Нужно понимать, что поиск неисправности редко представляет собой прямолинейный процесс. Очень часто тесты, которые вы придумываете в надежде найти решение проблемы, в реальности приводят к двусмысленным результатам и сомнительным выводам. Медицинское ультразвуковое оборудование дает классический пример этого. В действительности очень часто после сбора значительной тестовой информации делается неправильный вывод о том, что данный блок имеет неправильные входные сигналы, но правильные выходные сигналы. Промежуточные решения часто основаны на предположениях, которые неверны. Когда факты не сочетаются друг с другом, оцените средства, которыми была получена ваша информация.
246
ГЛАВА 7. Сервисное обслуживание цифровых схем
Как было указано в главе 1, другим аспектом локализации неисправностей является использование ваших чувств. Поищите явные физические повреждения на платах схемы. Может быть, есть клубы дыма, в таком случае найдите источник.
Используйте обоняние для идентификации горячих или сгоревших компонентов. После непродолжительной практики вы сможете отличать сгоревшие углеродные резисторы от полупроводниковых элементов, от горелого лака (обмоток трансформатора). Прислушайтесь к высоким звукам, гудению дуги высокого напряжения, треску сгорающей ИМС.
Попробуйте идентифицировать неисправные компоненты, особенно закороченные, и ИМС на ощупь. Однако будьте осторожны, чтобы не обжечь палец или не получить удар током. Металлический корпус транзистора является частью схемы и часто может служить высоковольтным выходом. Не занимайтесь поиском неисправностей, случайным образом, касаясь деталей в схеме с включенным питанием. Касание может помочь вам локализовать и компоненты с обрывом. Многие части - мощные транзисторы, ИМС и резисторы - должны быть теплыми. Холодный или прохладный компонент такого типа может иметь обрыв.
Если с помощью таких очевидных методов была обнаружена неисправность, обязательно ищите причину ее возникновения. В противном случае замененные компоненты обречены на печальную судьбу.
Методы тестирования и специализированное оборудование
Для поиска неисправностей цифровых схем пригоден тот же арсенал технических средств, что и для других типов оборудования. Однако многие инструменты и методы подходят только для диагностики цифровых устройств.
Логические пробники
Как указывалось в главе 2, логический пробник представляет собой прибор, который подключается к тому же источнику питания, что и проверяемая схема, имеет заостренный щуп, используемый для тестирования различных точек схемы. Очень популярна модель, показанная на рис. 7.28.
Рис. 7.28. Логический пробник и его провода
Методы тестирования и специализированное оборудование
247
Переключатель используется для установки логических параметров в соответствии с требованиями ТТЛ и КМОП, в зависимости от типа схемы, с которой вы собираетесь работать.
Другой переключатель, связанный со светодиодным индикатором импульса PULSE LED, осуществляет выбор между функциями импульсной и запоминания. В импульсном режима желтый светодиод будет мигать в течение около 300 мс при каждом логическом сигнале, а, если имеет место последовательность импульсов, индикатор будет мигать с частотой 3 Гц.
В режиме запоминания индикатор будет загораться и оставаться включенным при подаче любого сигнала на щуп пробника. Индикатор сбрасывается при переключении в импульсный режим. Это очень удобная функция в том случае, если вы хотите зарегистрировать импульс, который появляется не очень часто или случайно, или нельзя непосредственно наблюдать пробник в момент возникновения события, приводящего к появлению импульса.
Два других индикатора на логическом пробнике используются для индикации правильного логического уровня ВЫСОКИЙ или НИЗКИЙ на щупе пробника. Наблюдая эти индикаторы и импульсный индикатор, можно получить очень много информации о схеме, как показано на рис. 7.29.
Состояния логического пробника
«высокий» «низкий» Импульс
Обрыв	о	о	о
Логический 0	о	•	о
Логическая 1	•	о	о
Прямоугольные импульсы >100 кГц	•	•	*
Прямоугольные импульсы < 100 кГц	о	о	*
-LLL1	о	•	*
1111	• о
о Светодиодный индикатор выключен ф Светодиодный индикатор включен * Светодиодный индикатор мигает
Рис. 7.29. Показания индикаторов логического пробника
Логический импульсный генератор
Логический импульсный генератор внешне очень похож на логический пробник (см. рис. 7.28).
248
ГЛАВА 7. Сервисное обслуживание цифровых схем
Назначение этого прибора заключается в подаче импульса на вход схемы, в то время как логический пробник отслеживает логическое состояние выхода. Обычно логический импульсный генератор используется совместно с логическим пробником и питается от тестируемой схемы, подключаясь с помощью красного и черного проводов с зажимами к шинам питания логических ИМС. Когда щуп пробника подключен к схеме, его внутренняя схема воспринимает логическое состояние схемы в данной точке и устанавливает на своем выходе такой же логический уровень. При нажатии кнопки на импульсном генераторе на его щупе формируется очень короткий импульс противоположного уровня. Импульсный генератор имеет достаточный ток, чтобы преодолеть действие выходов схем, подключенных к той же точке. Ширина импульса (длительность) достаточно мала, чтобы выходные цепи устройств не были повреждены при кратковременной принудительной подаче на них высокого или низкого уровня.
Если нажать и удерживать кнопку, большинство импульсных генераторов выдают также последовательность импульсов. При генерации импульсов светодиодный индикатор мигает. Задача логического импульсного генератора заключается в том, чтобы искусственно вызвать изменения состояния необходимого входа для того, чтобы наблюдать реакцию на выходе. На рис. 7.30 показано, как логический пробник и логический импульсный генератор работают вместе в цифровой схеме.
Рис. 7.30. Использование логического импульсного генератора и логического пробника
Ручное тестовое оборудование
Многие сложные тестовые приборы выпускаются сейчас в виде ручных устройств. Цифровые вольтметры с графическими дисплеями могут использоваться для наблюдения формы сигналов и измерения частоты и времени, а также напряжения, тока и сопротивления.
Новые ручные приборы можно использовать для поиска неисправностей цифровых устройств таким образом, что возникает комбинация логического пробника, цифрового вольтметра, осциллографа и даже простого логического анализатора. На рис. 7.31 показан прибор Logic Dart фирмы Hewlett-Packard, способный изучить последовательность импульсов с помощью звукового тонового индикатора, позволяя специалисту не отводить взгляда от схемы.
Методы тестирования и специализированное оборудование
249
Он также показывает сопротивление или напряжение между двумя точками и выводит на дисплей показания в цифровом виде, как цифровой вольтметр с автоматической установкой диапазона. Если проверяются статические логические уровни, он работает как обычный логический пробник. Когда логические уровни изменяются, можно наблюдать форму сигналов. Можно также определить временные соотношения за счет одновременного вывода на экран формы трех разных сигналов, как это делает трехканальный логический анализатор. Эти формы сигналов можно сохранить и позже сравнить с формами сигналов аналогичной заведомо исправной платы. Logic Dart даже сам указывает различия между двумя образцами (см. рис. 7.31).
Осциллографы
Бывают случаи, когда необходима большая информация, чем та, которую может дать логический пробник. Часто вам нужно знать связь между двумя или более логическими сигналами. Лучшим средством демонстрации этой временной связи является осциллограф, который был деталь-
Рис. 7.31. Прибор Logic Dart фирмы Hewlett-Packard
но описан в главе 2. Любой осциллограф общего назначения можно использовать
при проведении определенных тестов цифровых схем, но некоторые из современных осциллографов имеют возможности, которые делают их особенно полезными для этих целей.
Основная функция, которая необходима в данном случае, это сбор информации по нескольким каналам, хранение форм импульсов и некоторые специальные режимы запуска. На рис. 7.32 показан аналоговый осциллограф с четырьмя входными каналами. Два их этих входов работают во всем диапазоне с избирательной чувствительностью от 10 мВ до 50 В на деление. Два других входа пред
назначены для использования, прежде всего, как входы логических сигналов с двумя диапазонами чувствительности 0,1 и 0,5 В на деление. Используя пробник 10Х, эти диапазоны можно превратить в 1 и 5 В на деление, что обычно является идеальным для многоканального цифрового отображения информации. Этот осциллограф также обладает уникальной функцией одновременной демонстрации двух статических форм сигнала, даже если они никак не синхронизированы друг с другом. Это очень полезно, если вам нужно наблюдать форму сигналов, но вас не интересуют их временные связи. В этом режиме вход пусковых импульсов автоматически переключается на вход, на который поступают отслеживаемые в настоящее время сигналы. Большинство осциллографов запускаются от одного выбранного источника пусковых сигналов и будут показывать только формы сигналов, которые синхронизированы с этим источником. Такой осциллограф не может хранить формы сигналов и, следовательно, регистрировать одиночные импульсы, которые редко возникают. Однако аналоговые осциллографы лучше подходят для учета периодически следующих выбросов с малой длительностью, как показано на рис. 7.32.
250
ГЛАВА 7. Сервисное обслуживание цифровых схем
Рис. 7.32. Аналоговый осциллограф, показывающий регистрируемые выбросы
Цифровой осциллограф с памятью, показанный на рис. 7.33, имеет четыре входных канала и множество различных режимов запуска. Осциллограф с цифровой памятью воспринимает быструю последовательность измерений напряжения на входе и хранит полученные результаты во внутренней памяти в цифровой форме. Эти данные используются для предоставления формы сигналов на экране.
Рис. 7.33. Цифровой осциллограф с памятью, регистрирующий «дребезг» контактов переключателя
Осциллографы с памятью очень эффективны при регистрации последовательности импульсов, которые возникают нерегулярно, и подобные случаи нередки.
Поскольку события, приводящие к возникновению сигналов, не часто случаются в цифровых схемах, чтобы указать осциллографу, что произошло именно критическое событие, на которое он должен отреагировать, необходимы сложные режимы запуска.
Показанный на рисунке осциллограф может отображать информацию, которая была зарегистрирована до, после или и до, и после запускающего события. Другими словами, запускающее событие может произойти справа, слева или в центре развертки. Он также позволяет наблюдать все четыре входных канала
Методы тестирования и специализированное оборудование
251
и ждать запуска, пока не будет достигнута определенная комбинация логических сигналов.
Оценка таких моментов, как вибрация контактов переключателя (известная как «дребезг» контактов), может быть эффективно выполнена только с помощью осциллографа с памятью. Развертка на экране осциллографа с памятью показывает последствия перемещении тумблера из одного положения (разомкнут) в другое (замкнут). Момент, когда произошло переключение, помещается в центре экрана, что показывает состояние ключа до (логический уровень высокий) и после (переход на низкий) запускающего события. Этот осциллограф может также печатать регистрируемые формы сигналов на принтере компьютера.
Логические анализаторы
В сложных цифровых схемах, особенно в микрокомпьютерных системах, необходимо знать связи между многими различными сигналами. В этой ситуации формы напряжения не так важны, как логические состояния, которые возникают в определенные моменты времени. Логический анализатор - это прибор, который позволяет одновременно собирать и хранить информацию о логическом состоянии по многим каналам (48 и более). Эти замеры выполняются через определенные интервалы времени, которые задаются внутренним источником тактовых импульсов или внешним источником, находящимся в исследуемой схеме.
Логический анализатор, который показан на рис. 7.34, совмещен с персональным компьютером. Он может представлять информацию в виде временных диаграмм или таблицы состояний в двоичном, восьмеричном, шестнадцатеричном виде или в виде символов ASCII. 48 входных каналов подключены через
адаптерную приставку, которая подключена к плате внутри компьютера (рис. 7.34).
Рис. 7.34. Логический анализатор на основе персонального компьютера
252
ГЛАВА 7. Сервисное обслуживание цифровых схем
Другим очень полезным тестовым инструментом для проверки цифровых схем любых типов является специализированный зажим для микросхем, напоминающий бельевые прищепки и выпускаемый в разных модификациях, соответствующих размерам корпусов с двухрядным расположением выводов, чтобы обеспечить контакт с каждым выводом ИМС. Другой конец зажима имеет выводы, к которым удобно подключать пробник осциллографа и т.д.
Многие логические анализаторы снабжены специальными наконечниками для соединения с выводами зажимов, что обеспечивает надежное соединение и предотвращает замыкание между проводами. Различные варианты этих зажимов можно видеть на рис. 7.35.
Рис. 7.35. Зажимы для микросхем
Методы поиска неисправностей логических устройств
После того как вы локализовали неисправность в конкретном модуле или плате, следует идентифицировать неисправный компонент. Здесь снова необходимы знания о правильной работе логической схемы. В некоторых случаях сервисные руководства могут содержать таблицы истинности для всей комбинированной логики схемы. Однако, в большинстве случаев, для того чтобы понять, как должна работать схема, специалист должен анализировать конфигурацию логических элементов.
Цель заключается в том, чтобы выработать набор входных условий, которые могли бы подтвердить, что данная схема работает исправно. Рис. 7.36 возвращает нас к использовавшемуся ранее контроллеру микроволновой печи и будет служить примером проверяемой схемы.
Эта простая логическая схема была предназначена для сохранения работающего состояния микроволновой печи при включенном таймере, закрытой двери и после нажатия кнопки Пуск. Предположим, что была локализована неисправность именно в этой части схемы, при этом у нас никогда не возникает логическая 1 в точке «Соок» («готовить»).
Методы тестирования и специализированное оборудование
253
При работе с микроволновой печью лучше всего начать с отключения магнетрона. Это важно, поскольку вы, может быть, будете искусственно подавать логические сигналы при тестировании. Эти сигналы могут игнорировать встроенные в печь средства безопасности. Вам может помешать или навредить здоровью включение высоковольтных схем, не говоря уже о микроволновом излучении.
Правильный способ отключения высокого напряжения описан в руководстве. Если инструкция отсутствует, то лишний раз удостоверьтесь в том, что во время тестирования схемы не произойдет самопроизвольной активации высокого напряжения. Не работайте с микроволновой печью, если вы не полностью понимаете опасность и не приняли достаточные меры предосторожности. При проникновении внутрь шасси таких высоковольтных устройств вы можете получить сильный ожог даже ни к чему не прикасаясь.
Поместите логический пробник на выход U1A, верхнего элемента И с тремя входами. При закрытой дверце и включенном таймере логический пробник должен показать высокий уровень при нажатии кнопки Пуск и низкий, когда она отпущена. Если реакция именно такая, то U1 работает правильно. Если выход U1A всегда низкий, нужно использовать пробник для проверки правильности логических сигналов, поступающих на входы этой логической ячейки. Установите пробник на вывод 13 U1A и включайте и выключайте таймер. Логический уровень в указанной точке должен изменяться соответствующим образом.
Повторите процедуру с выводом 2, открывая и закрывая дверцу печи. Затем проверьте вывод 1 U1A, нажимая и отпуская кнопку Пуск. Если все эти входы работают правильно, то неисправность может быть связана со схемой U1A. Другой вариант: поломка в U2A может вызывать такую реакцию ША.
Для определения неисправного компонента можно подключить логический импульсный генератор ко входу U2A (вывод 1), алогический пробник к выводу 3 схемы U2A. Логическая 1 на входе U2 должна давать логическую 1 на выходе. Если выход остается низким, удалите U2 и заново проверьте U1A без U2. Если U1A работает нормально, замените U2, в противном случае замените обе схемы. Компоненты, которые припаяны, обычно заменяют, извлекая их из схемы, единственное исключение - это очень дорогие или труднодоступные детали. Такие компоненты выпаиваются и заменяются только в самом крайнем случае.
Если у вас нет логического импульсного генератора, можно использовать другие методы. Как было указано выше, логический импульсный генератор подает на вход противоположную полярность в течение очень короткого промежутка, порядка нескольких микросекунд. Если даже при этом импульс приводит к перегрузке выходных соединений данного элемента, то это не вызывает повреждений в схеме.
254
ГЛАВА 7. Сервисное обслуживание цифровых схем
Другой способ выполнения той же операции заключается в использовании конденсатора в ка